HBV and the immune response

C. Ferrari

Unit of Infectious Diseases and Hepatology
Laboratory of Viral Immunopathology
Azienda Ospedaliero-Universitaria di Parma
Italy
List of topics

- Kinetics of immune responses: from the early stages of infection to HBV control or persistence
- Features of T cell and NK responses in chronic infection
- Mechanisms of T cell dysfunction in chronic HBV infection
- Effect of virus control on T and NK cell responses in chronic patients
- Potential strategies to reconstitute the anti-viral T cell function
List of topics

- Kinetics of immune responses: from the early stages of infection to HBV control or persistence
- Features of T cell and NK responses in chronic infection
- Mechanisms of T cell dysfunction in chronic HBV infection
- Effect of virus control on T and NK cell responses in chronic patients
- Potential strategies to reconstitute the anti-viral T cell function
HBV is a ‘stealth virus’ poorly sensed by the innate immune system

Wieland S et al. PNAS 2004
HBV is a poor inducer of innate responses

- Cytokine and chemokine production in acute HBV infection is significantly more modest and delayed compared with acute HIV infection *(Stacey AR J. Virol. 2009)*

- Low production of type I IFN, IL-15 and IFN-λ1, associated with high serum IL-10 levels, at the early stages of HBV infection *(Dunn C. et al Gastroenterology 2009)*
Is HBV able to inhibit innate responses?

Extracellular sensing (TLR)
- TLR2
- TLR4
- TLR3

Intracellular sensing (RIG-1)
- RIG-1
- HBx
- HBVpol
- IFN-β

- NF-kB target genes
- PRD
Is HBV able to inhibit innate responses?
Summary of the early events in HBV infection

- Poor induction of early intracellular innate responses
- Efficient and timely induction of adaptive responses
- Early non cytolytic clearance of HBV
- Delayed NK cells activation
- T cell inhibition to avoid excessive damage

Clinically overt infections
Dunn C et al Gastroenterology 2009

Weeks from infection

- HBV-DNA
- NK cells
- %IFNγ+ NK cells

Weeks

- Dunn C et al Gastroenterology 2009

HBV-DNA

0 5x10⁷ 1x10⁸

%IFNγ+ NK cells

0 5 10 15 20 25

ALT IU/L

2,000

1,000

0
Maturation of long-lasting memory T cell responses in self-limited HBV infections

HBV INFECTION

Strong, multi-specific, T1 oriented T cell responses

Self-limited

Long-lasting protective responses

Virus control / occult infection

ACUTE PHASE

RECOVERY PHASE
(20 years from recovery)

% CD8-mediated cytotoxicity

HLA-A2 restricted HBV peptides
Progressive T cell functional impairment in chronically evolving acute HBV infections

HBV INFECTION

Weak and narrowly focused T cell responses

Chronic evolution

Persistent and progressive impairment of protective responses

CD4 RESPONSES (to core peptides)

CD8 RESPONSES (to HBV peptides)

HBV peptides

Virus persistence
HBV-specific T cells in chronic infection
HBV-SPECIFIC CD8 CELLS ARE PREFERENTIALLY CONCENTRATED WITHIN THE LIVER IN PATIENTS WITH CHRONIC HBV INFECTION
(Fisicaro P. et al. Gastroenterology 2010)
INTRAHEPATIC HBV-SPECIFIC T CELLS ARE MORE DEEPLY EXHAUSTED THAN THEIR PERIPHERAL BLOOD COUNTERPARTS IN CHRONIC HBV INFECTION

(Fisicaro P. et al. Gastroenterology 2012 and personal communication)

![Graph showing CD4 and CD8 T cells in blood and liver with IFN-γ, TNF-α, and IFN-γ/IL2](image)

![Graph showing correlation between HBV liver and HBV-DNA IU/ml](image)
NK cells in chronic infection
NK cell functional dichotomy in chronic HBV infection

Impaired IFN-\(\gamma\) production with normal cytotoxicity (I)

Peppa D. et al Plos Pathogens 2010

IFN-\(\gamma\)

![Graph showing % IFN-\(\gamma\) production in Healthy vs. CHB]

- Healthy: N=29
- CHB: N=46

P<0.0001

CD107a

![Graph showing % CD107a production in Healthy vs. CHB]

- Healthy: N=21
- CHB: N=33

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>29</td>
</tr>
<tr>
<td>CHB</td>
<td>46</td>
</tr>
</tbody>
</table>

Peppa D. et al Plos Pathogens 2010
NK cell functional dichotomy in chronic HBV infection

Impaired IFN-γ production with normal cytotoxicity (II)

IFN-γ

- IL2+IL12 18h

- p=0.0045

CD107a

anti-NKp30

anti-NKp46

anti-NKG2D

Oliviero B et al *Gastroenterology* 2009
NK cell functional dichotomy in chronic HBV infection

Impaired IFN-γ production with normal cytotoxicity (III)

Tjwa E. et al. Journal of Hepatology 2011
NK cell functional dichotomy in chronic HBV infection

Impaired IFN-γ production with normal cytotoxicity (IV)

NK cells seem to be more pathogenic than protective in chronic HBV infection
List of topics

- Kinetics of immune responses: from the early stages of infection to HBV control or persistence
- Feature of T cell and NK responses in chronic infection

Mechanisms of T cell dysfunction in chronic HBV infection

- Effect of virus control on T and NK cell responses in chronic patients
- Potential strategies to reconstitute the anti-viral T cell function
Different levels of T cell functional efficiency in different conditions of HBV control

![Graph showing different levels of T cell functional efficiency in different conditions of HBV control. The graph compares CD4+ and CD8+ T cell responses across different stages of HBV infection: Naïve HBeAg negative CHB, Inactive carriers, Occult infections, and Acute hepatitis B (resolution phase). The graph illustrates the mean % IFN-γ, IL-2, and TNF-α of T cells.](image-url)
PUTATIVE MECHANISMS OF T CELL EXHAUSTION IN HBV INFECTION

MODEL FOR HIERARCHICAL LOSS OF CD8 FUNCTIONS DURING CHRONIC VIRAL INFECTIONS

<table>
<thead>
<tr>
<th>Antigen Persistence</th>
<th>Antigen clearance</th>
<th>Proliferation</th>
<th>IFN-γ</th>
<th>TNF-α</th>
<th>IL-2</th>
<th>Cytotoxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve CD8 cell</td>
<td>Effector CD8 cell</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Acute infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are the virus-specific T cell defects of chronic HBV infection reversible?

Effect of antigen decline

- Acute Self-limited Infection
 - Efficient T cell function/differentiation
 - Effector memory
 - Central memory

- Chronic infection
 - Inefficient T cell function/differentiation
 - Antigen persistence

- Antigen decline

Rapid Proliferation / Differentiation

Naïve CD8 cell

+Ag

Effector CD8 cell

Restored T cell function/differentiation
Effect of long-term NUC therapy on T cell responses
T cell restoration following long-term NUC treatment is efficient in vitro

![Graph showing percentage of CD8+ T cells producing IFN-γ, IL-2, and CD107a in different groups: Naive CHB, NUC treated HBsAg neg, NUC treated HBsAg pos, Acute hepatitis B (follow-up).]

Boni C. et al. Gastroenterology 2012
T cell restoration following long-term NUC treatment is partial ex vivo

Restoration of the T cell function is efficient in vitro but only partial ex vivo even following complete control of virus replication and decline of antigen.
List of topics

- Kinetics of T cell responses: from the early stages of infection to HBV control or persistence

- Additional mechanisms of T cell dysfunction in chronic HBV infection

- Effect of virus control on T cell responses in chronic patients

- Potential strategies to reconstitute the anti-viral T cell function

- Implications for future therapies
INTRAHEPATIC INHIBITORY MECHANISMS

Modified from U. Protzer et al. Nature Reviews in Immunology 2012
THE INTRAHEPATIC MILIEU IMPAIRS IL-2 PRODUCTION BY T CELLS

Myeloid suppressor cells + ARGINASE + L-arginine depletion

Hepatocytes

CD3ζ down-regulation

CD3ζ dependent impairment of IL2 production by intra-hepatic T cells

Das et al J.Exp.Med. 2008
INTRAHEPATIC INHIBITORY MECHANISMS

Modified from U. Protzer et al. Nature Reviews in Immunology 2012
MECHANISMS OF HEPATIC TOLERANCE: IMMUNOSUPPRESSIVE CYTOKINE MILIEU

Hepatocytes

SPECE OF DISSE

Sinusoidal endothelial cells

Dendritic cell

Kupffer Cell

Stellate Cell

Dendritic cell

TGF-β

IL-10

HEPATIC SINUSOID
THE IMMUNOSUPPRESSIVE CYTOKINE MILIEU CAN IMPAIR IFN-γ PRODUCTION BY NK CELLS LIMITING THEIR ANTI-VIRAL ACTIVITY

Preserved cytolytic activity

Dunn et al J.Exp.Med 2007
Peppa et al PloS Pathogens 2010
NK CELL MEDIATED DELETION OF HBV-SPECIFIC T CELLS

TRAIL-mediated T cell deletion

INTRAHEPATIC INHIBITORY MECHANISMS

- Bim mediates premature death of CD8 T cells following intrahepatic antigen presentation (Holtz et al Gastroenterology 2008)

Modified from U. Protzer et al. Nature Reviews in Immunology 2012
INTRAHEPATIC INHIBITORY MECHANISMS

Modified from U. Protzer et al. Nature Reviews in Immunology 2012
Expression of various inhibitory receptors on circulating and intrahepatic virus-specific CD8 cells of patients with chronic HBV infection
T CELL CO-INHIBITORY MOLECULES IN THE LIVER

PD-1 is up-regulated on HBV-specific T cells

Kupffer, LSEC and stellate cells express PD-L1
TIM-3 is up-regulated on HBV-specific T cells

Kupffer cells express galactine-9

T CELL CO-INHIBITORY MOLECULES IN THE LIVER
Expression of various inhibitory receptors on circulating and intrahepatic virus-specific CD8 cells of patients with chronic HBV infection

Fisicaro P. et al. Gastroenterology 2012
Bengsch et al. J. Hepatol. 2014

T cell restoration by Tim-3 blockade

Nebbia G. et al. Plos One 2012

T cell restoration by CTLA-4 blockade

Control
Anti-TIM-3
Anti-PD-L1

Raziorrouh B et al, Hepatology 2010
Schurich A et al. Hepatology 2011

T cell restoration by 2B4 blockade

T cell restoration by CTLA-4 blockade

p = 0.01

HBV-specific T cells

Genome-wide expression profiling

Mysregulated genes and pathways associated with T cell exhaustion

Correction strategies to restore anti-viral T cell functions
TRANSCRIPTOME STUDY IN ACUTE AND CHRONIC HBV INFECTION

Isolation of HBV/FLU-specific CD8+ T cells by cell sorting

RNA extraction and amplification

Gene expression by microarray analysis (4x44K Agilent)

VALIDATION AND DISCOVERY OF NEW TARGETS

<table>
<thead>
<tr>
<th>Patient</th>
<th>Infection</th>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACUT E</td>
<td>785</td>
</tr>
<tr>
<td>2</td>
<td>ACUT E</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>ACUT E</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>ACUT E</td>
<td>118</td>
</tr>
<tr>
<td>5</td>
<td>ACUT E</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>RESO LVED HEP B</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>RESO LVED HEP B</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>RESO LVED HEP B</td>
<td>0</td>
</tr>
<tr>
<td>CONTROLS</td>
<td>CELL SPECIFICITY</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>THY HEAL LU</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>THY HEAL LU</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>THY HEAL LU</td>
<td></td>
</tr>
</tbody>
</table>
A deep metabolic and energetic impairment is typical of exhausted T cells. Multiple levels of correction will certainly be needed to restore an efficient anti-viral T cell function. Is restoration of an efficient anti-viral T cell function an achievable objective?
Potential strategies to reconstitute the anti-viral T cell function and implications for future therapies
Clinical needs in HBV therapy for CH-B:

to shorten NUC therapy by accelerating HBsAg clearance
SEQUENCIAl NUC/IFN-α THERAPY
Potential strategy to to shorten NUC therapies

Modified from: Ferrari C. Gastroenterology 2008
EFFECT OF ANTI-PD-1 THERAPY ON HCV INFECTED CHIMPANZEEES

Effect on viral load

Effect on magnitude of T cell responses

Fuller MJ et al. PNAS 2013
PD-1 PATHWAY BLOCKADE

Proof of concept of α-PD-1 in Chronic HCV

- Blinded, PBO controlled, SAD study
- α-PD-1 in 54 HCV infected patients, IFN failures and treatment naive
- 0.03mg/kg -10mg/kg
- 3 subjects w/ > 4 log HCV RNA decline: All 3 received 10mg/kg dose
 - 1 subject (A) had isolated, transient Grade 4 ALT increase to ~17x ULN
- 1 subject (B) undetectable > 1 year post treatment

SEQUENTIAL NUC/IFN-α THERAPY
Potential strategy to optimize IFN-α efficacy and to shorten NUC therapies

Modified from: Ferrari C. Gastroenterology 2008
SEQUENCIAL NUC/IFN-α THERAPY
Potential strategy to optimize IFN-α efficacy and to shorten NUC therapies

- NUC treatment
-Decline of antigen load

Antigen load

T CELL DYSFUNCTION

RECOVERY OF T CELL RESPONSIVENESS

HBsAg CLEARANCE

ANTI-HBs SEROCONVERSION

SPECIFIC VACCINES
- Recombinant (Gilead)
- DNA (Transgene)
- Peptides (Immune Targeting System)

CD4

CD4

CD8

CTL

IFN-γ

IL-2

Proliferation

-/+ ++ ++ ++

Modified from: Ferrari C. Gastroenterology 2008
Synergistic effect of PD-L1 blockade and therapeutic vaccination on T cell responses and viral control

(Liu J. et al. PLOS Pathogens 2014)

T cell immunity

WHA replication

![Graphs showing T cell immunity and WHA replication](Image)
Synergistic effect of PD-L1 blockade and therapeutic vaccination on T cell responses and viral control

(Ha S-J. et al. J. Exp. Med. 2008)
SEQUENCIAL NUC/IFN-α THERAPY
Potential strategy to optimize IFN-α efficacy and to shorten NUC therapies

Modified from: Ferrari C. Gastroenterology 2008
TLR8 agonists can trigger potent activation of innate immune cells in human liver

J. Jo et al. PLOS Pathogens 2014
SEQUENTIAL NUC/IFN-α THERAPY
Potential strategy to optimize IFN-α efficacy and to shorten NUC therapies

Modified from: Ferrari C. Gastroenterology 2008
FUTURE POTENTIAL IMMUNE MODOLATORY STRATEGIES TO TREAT HBV INFECTION

NUC therapy
Decline of antigen load
Blockade of inhibitory pathways
T cell stimulation

Virus/antigen load

T cell functional efficiency

Full T cell exhaustion → Partial T cell exhaustion → Partial T cell restoration
Acknowledgments

C. Boni P. Fisicaro
V. Barili A. Penna
D. Laccabue M. Pilli
L. Talamona A. Orlandini
M. Rossi T. Giuberti
C. Cavallo C. Mori

G. Missale

Laboratory Viral Immunopathology
Unit Infectious Diseases and Hepatology
Azienda Ospedaliero-Universitaria di Parma, Italy

A. Bertoletti
Singapore Institute for Clinical Sciences, A*STAR, Singapore

P. Lampertico
M. Colombo
University of Milano, Italy

M. Levrero
La Sapienza University
Rome, Italy