HBV: perspectives for treatment

Jorg Petersen
Liver Unit
IFI Institute at
Aklepios Klinik St. Georg
University of Hamburg
email: petersen@ifi-medizin.de
Disclosures

Grant / Research Support: BMS, Novartis, Roche

Clinical studies: AbbVie, BMS, Boehringer, Gilead, Janssen, Merck, MSD, Roche, Siemens, Vertex

Consultant/Advisor: Abbott, AbbVie, BMS, GSK, Kedrion, Roche

Sponsored lectures: Abbott, BMS, Boehringer, Gilead, Janssen, Merck, MSD, Novartis, Roche
Goal: “Cure” For Patients With Chronic Hepatitis B (CHB)

Finite treatment duration

Cessation of all treatment

Absence of HBsAg

Absence of cccDNA
Potential Research Approaches

HBV Burden
- cccDNA inhibition
- ↓ Virion Production
- ↓ New Hepatocyte Infection

HBV-specific Immunity
- ↑ Adaptive Immunity
- ↑ Innate Immunity
- Antigen Reduction
Limitations of current monotherapies in CHB

• Current treatments (NA/PegIFN) achieve sustained disease control in the majority of patients

• But the rate of HBsAg loss is rather low (and no loss of cccDNA)

• Often life-long therapy needed (NAs, especially in HBeAg neg patients)

• NAs inhibit viral (-) strand and (+) strand synthesis within nucleocapsids without directly affecting cccDNA

• PegIFN alpha inhibits transcription of viral genes (repressing cccDNA), shows immunomodulatory activity and may induce some reduction of cccDNA, but has side effects and is successful in only 35% of patients
NAs and PegIFN used in combination therapy

• should have additive or synergistic activity against HBV
• should have no added toxicity
• may induce cccDNA loss or control and higher rates of HBsAg loss (HBeAg seroconversion)
Which strategy is the best to enhance HBsAg loss rates?

- Simultaneously combo
- Add-on IFN
- Switch
PegIFN plus ETV in HBV infected humanized mice (upa mice)
Study Design

- Randomized, controlled, open-label study (N=740)
 - Stratified by screening HBeAg status and HBV genotype
- Inclusion criteria
 - HBeAg+ and HBV DNA ≥20,000 IU/mL; HBeAg- and HBV DNA ≥2,000 IU/mL
 - ALT >54 and ≤400 U/L (men); ALT >36 and ≤300 U/L (women)
 - No bridging fibrosis or cirrhosis on liver biopsy or by transient elastography
Results: Change in Serum HBsAg Levels

Efficacy: On-Treatment Changes in HBsAg Levels at Week 48

3 patients who were re-treated at Week 48 were excluded from Week 48 calculations. Error bars represent 95% confidence intervals.

Marcellin et al AASLD 2014
Results: HBsAg Loss Over Time (Week 72)

- 7 patients had HBsAg seroreversion on or after Week 48 (4 [TDF + PEG 48 wk], 3 [TDF + PEG 16 wk → TDF 32 wk])
 - 5/7 had ≤1 week of therapy after HBsAg loss
Efficacy: HBsAg Loss by HBeAg Status and Genotype at Week 72*

<table>
<thead>
<tr>
<th></th>
<th>Genotype A</th>
<th>Genotype B</th>
<th>Genotype C</th>
<th>Genotype D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBeAg Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDF + PEG 48 Wk</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>TDF + PEG→TDF</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDF</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEG</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>n=7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBeAg Negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDF + PEG 48 Wk</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TDF + PEG→TDF</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDF</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEG</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>n=5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Missing = failure analysis.

Marcellin et al AASLD 2014
Which strategy is the best to enhance HBsAg loss rates?

- PEG-IFN
- NUCs
 - Simultaneously combo

- PEG-IFN
- NUCs
 - Add-on IFN

- PEG-IFN
- NUCs
 - Switch
Restored Function of HBV-Specific T Cells After Long-term Effective Therapy With Nucleos(t)ide Analogue

CAROLINA BONI,* DILETTA LACCABUE,* PIETRO LAMPERTICO, TIZIANA GIUBERTI,* MAURO VIGANÒ,† SIMONA SCHIVAZAPPA,* ARIANNA ALFIERI,* MARCO PESCI,* GIOVANNI B. GAETA,§ GIUSEPPINA BRANCACCIO,§ MASSIMO COLOMBO,‡ GABRIELE MISSALE,* and CARLO FERRARI*
Adding PegIFN to ETV increases response rates in HBeAg-pos CHB patients: week 96 (ARES study)

Major limitation: PegIFN mono arm missing

AASLD 2014:

PEGAN (HBeAg-) Bourliere et al #1836
HERMES (HBeAg-) Lampertico et al LB31
Switching from entecavir to PegIFN in patients with HBeAg-pos CHB: a randomized open-label trial (OSST trial)

ETV 9-36 months

Switch

HBV-DNA ↓1000 copies/ml
HBeAg ↓ 100 PE/ml, n=200

Baseline HBsAg ↓1500 IU/ml

PPV

Highly selected patients in respect to HBeAg quantification – useful for day-to-day practice?

Ning Q et al., J Hepatol 2014 http://dx.doi.org/10.1016/j.jhep.2014.05.044
Future HBV therapies: new targets, new drugs

Immunomodulation
- Toll-like receptors agonists, e.g. GS-9620
- Anti-PD-1 mAb, e.g. BMS-936559
- CYT107
- GI13000
- Vaccine therapy

Entry inhibitors (HBV/HDV)
- Lipopeptides, e.g. Myrcludex-B

RNA interference, (siRNA) e.g. ARC-520

Inhibition of HBsAg release, e.g. REP 9AC

Polymerase inhibitors
- Nucleoside analogues, e.g. TAF, amdoxovir, MIV-210
- Non-nucleoside, e.g. LB80380

Targeting cccDNA
- HAPs
- Chromatin-modifying enzymes

Inhibition of Nucleocapsid Assembly, e.g. Bay 41-4109, NVR 3-778

Inhibition of Prenylation (HDV)
- Lonafarnib

Future therapies - new targets AASLD 2014

- Capsid inhibitor - Novira - LB19 Ed Gane et al – Phase 1
- Entry inhibitor - Myrcludex - LB 20 S Urban et al – Phase 2
- siRNA - ACR 520 - LB21 M Yuen et al – Phase 2b to start
- TLR 7 agonist – mechanism of action – Niu C et al, #1879
- Chromatin modifying enzymes - M Leverero et al, # 220
Myrcludex B (entry inhibitor HBV and HDV)

- Myrcludex B is an optimized, HBV L-protein-derived lipopeptide
- Acts as an HBV and hepatitis D virus (HDV) entry inhibitor by binding to and inactivating an essential HBV-receptor (sodium-taurocholate cotransporting polypeptide or NTCP) expressed on differentiated human hepatocytes, which is responsible for the interaction with the preS1-domain of HBV
- Myrcludex B is in P1 development in Germany; P2 trial in Russia began in April 2014
Preclinical studies with HBV entry inhibitors

Myrcludex-B: Chemically synthesized lipopeptides derived from the preS1 domain of HBV block de novo HBV infection in vitro and in vivo

(Myrcludex B: Myr-GQNL STSNP LGFFP DHQLD PAFRA NTNMP DWDFW PHKDT WPDAH YTC

LB-20: A Proof-Of-Concept Phase 2a Clinical Trial with HBV/HDV Entry Inhibitor Myrcludex B (S. Urban)

- At week 24, HBV DNA levels declined in all treatment groups
- ≥1 log reduction was observed in 6/8 patients in the 10 mg cohort
- 7/40 patients showed ≥1 log HBV DNA reduction in lower dosing groups
- No significant effect on HBsAg was observed after 24 weeks of treatment
LB-20: A Proof-Of-Concept Phase 2a Clinical Trial with HBV/HDV Entry Inhibitor Myrcludex B (S. Urban)

- 6/7 vs. 7/7 patients showed \(\geq 1 \) log HDV RNA reduction at week 24 during Myr B monotherapy vs. Peg-IFN combination therapy
- 2 vs. 5 patients became HDV RNA negative during Myr B monotherapy vs. Peg-IFN combination therapy
- Myr B/Peg-IFN combination therapy induced more preS-specific antibodies than Myr B monotherapy
Cell proliferation alone or combined with antiviral treatment to block re-infection (Myrcludex B) promoted cccDNA clearance in the majority of the human hepatocytes.

Lutgehetmann, Petersen, Dandri, Hepatology 2010; Weiss, Petersen, Dandri et al, EASL 2014, 0101
Arrowhead – ACR-520 (siRNA)

- Arrowhead Research Corporation is developing ARC-520 as an intravenously administered treatment for HBV infections.

- ARC-520 is comprised of two siRNA sequences against two regions of the HBV genome and is actively targeted to the liver using the company's Dynamic PolyConjugates (DPC) delivery system.

- A P1 clinical trial has been conducted in Australia and a P2a trial is underway in Hong Kong with first results presented at AASLD 2014, 2b studies about to start in Europe.
LB-21: Phase II, Dose-Ranging Study of ACR-520, a siRNA-Based Therapeutic, in Patients with Chronic HBV Infection (M. Yuen)

Figure 1.- Quantitative HBsAg in serum

* P < 0.05
Error bars = SEM
Oral TLR7 Agonist

TLR7: part of the innate immune system
- Expressed in pDCs and B cells
- Activated by ssRNA or small molecules

Cytokines Induced by a Toll-Like Receptor 7 Agonist Potently Inhibit HBV RNA, DNA, and Antigen Levels in Primary Human Hepatocytes

Congrong Niu, Stephane Daffis, Mei Yu, Guofeng Cheng, William E. Delaney IV, Simon P. Fletcher
Gilead Sciences, Inc., Foster City, CA

Objectives

- To investigate the molecular mechanisms responsible for the antiviral response to GS-9620 using an in vitro model of hepatitis B virus (HBV) infection in primary human hepatocytes (PHH)

Conclusions

- A potent TLR7 agonist did not directly activate antiviral pathways in PHH, consistent with the lack of functional TLR7 in hepatocytes
- PBMCs treated with a TLR7 agonist produced cytokines that inhibited HBV in PHH
 - Sustained exposure to cytokines potently inhibited HBV in PHH
 - Short-duration exposure to cytokines had transient antiviral effects
 - The type I IFN-signaling pathway was essential for the observed in vitro antiviral effects
- Additional components of the TLR7-induced immune response (beyond antiviral cytokines) are likely to play an important role in the antiviral response to GS-9620 in vivo³

Niu C et al, AASLD 2014, #1879
Conclusion

• NAs and PegIFN may have additive or even synergistic effects

• EASL is considering combination therapy in CHB as a still unmet need and is supporting a further assessment of safety and efficacy

• Better understanding of the association of qHBsAg with cccDNA will help to guide combination therapies – intrahepatic DNAs important !!!

• Robust animal models available to investigate intrahepatic viral particles during antiviral therapy

• Regained interest for development of novel HBV therapies due to development in HCV

• Combination trials of several antiviral compounds with immunomodulatory drugs needed

• HBsAg loss and cccDNA silencing (?) will be the ultimate goal
What might a HBV curative regimen look like?

- Potent NA: agent to prevent viral spread and cccDNA re-amplification
- cccDNA Inhibitor: safe and selective agent to reduce or silence cccDNA
- Immune Activator: agent(s) to activate specific antiviral immune responses or relieve repression/exhaustion of the system
- HBV Antigen Inhibitor: agent(s) to block/inhibit the HBV life-cycle [entry, cell-spread, capsid assembly, HBx, HBeAg, HBsAg]

Courtesy S Locarnini
Thank you for your attention

Jorg Petersen
Liver Unit
IFI Institute at
Asklepios Klinik St. Georg
University of Hamburg
e-mail: petersen@ifi-medizin.de
GS-9620: Mechanism of Action

- **GUT LUMEN**: GS-9620 is administrated in the gut lumen.
- **PORTAL VEIN**: GS-9620 is transported to the portal vein.
- **SYSTEMIC CIRCULATION**: GS-9620 reaches the systemic circulation.
- **pDCs**: Production of antiviral cytokines by pDCs.
- **Antiviral cytokines**: Released into the portal vein and systemic circulation.