

Quantification of fibrosis and cirrhosis outcomes

5° European Young Hepatologists Workshop August, 27-29. 2015, Moulin de Vernègues

Vincenza Calvaruso, MD, PhD Gastroenterology and Hepatology Unit, Di.Bi.M.I.S. University of Palermo

The natural history of chronic liver disease

Hepatic Venous Pressure Gradient (HVPG) (mm Hg)

Cirrhosis is a progression of stages of

increasing severity and non-reversibility

	Metavir F4 Ishak S 5- 6	Metavir F4 Ishak S 6	Metavir F4 Ishak S 6	Metavir F4 Ishak S 6	Metavir F4 Ishak S 6
Biology:	Fibrogenesis & angiogenesis	Scar X-linking	Acellular scar Nodule size	Insoluble scar & small nodules	Scars & large nodules
HVPG:		> 5	> 10	> 12 increasing vasodilatation	<u>≥</u> 12
Clinical:	none	none	Varices formation	Ascites (without VH)	VH (<u>+</u> ascites)
Stage:	Early stage cirrhosis	Compensated (stage 1)	Compensated (stage 2)	Decompensat ed (stage 3)	Decomp (stage 4)

Stages according to D'Amico et al, J Hepatol 2006;44: 217-31

Histological classification of the severity of cirrhosis

Thickness of septa

Size of the nodule

D **2b** 2c.

Nagula S, Jain D, Groszmann RJ, Garcia-Tsao G. J Hepatol 2006;44:111-117.

Nagula S, Jain D, Groszmann RJ, Garcia-Tsao G. J Hepatol 2006;44:111-117.

Kumar M et Al, Aliment Pharmacol Ther 2008

The Laennec scoring system of cirrhosis

Thickness of septa / size of the nodule

SU Kim, HJ Oh, IR. Wanless, S Lee, YN Park, J Hepatol 2012

The Laennec scoring system for stratification of prognosis in patients with liver cirrhosis

SU Kim, HJ Oh, IR. Wanless, S Lee, YN Park, J Hepatol 2012

Issues for histological assessment of liver fibrosis

Histological scoring systems categorize architectural changes

No quantitative progression across worsening categories

No relation to amount of collagen (fibrosis) using trichrome/ reticulin stains which are general connective tissue stains

Standish, 2006

<u>Sirius red</u> staining identifies primarily collagen the major constituent of fibrosis in chronic liver disease

Puchtler, 1988

Correlation between area of fibrosis / Metavir stage

Correlation between area of fibrosis /Ishak stage

Area of fibrosis (%)

METAVIR	Area of fibrosis	Appearance	Ishak stage: Categorical description	Ishak stage: Categorical assignment	Fibrosis measurement*
STAGE	(mean + SEM)		No fibrosis (normal)	0	1.9%
		1 . x x	Fibrous expansion of some portal areas +	1	3.0%
F0		1 · · ·	short fibrous septa		
	2 <u>+</u> 0.14	2	Fibrous expansion of most portal areas ± short fibrous	2	3.6%
F1		Sec. Sec.	septa		
	3.4 <u>+</u> 0.25	the second	Fibrous expansion of most portal areas with occasional portal to portal (P-P) bridging	3	6.5%
F2		**			
. –	5.8 <u>+</u> 1.7	ESIX.	Fibrous expansion of portal areas with marked bridging (portal to portal (P-P) as well as portal to central (P-C))	4	13.7%
F3	14.7 <u>+</u> 3.77	Sil	Marked bridging (P-P and/or P-C), with occasional nodules (incomplete cirrhosis)	5	24.3%
F4	25.1 <u>+</u> 4.44	α	Cirrhosis, probable or definite	6	27.8%

Figure 1 Stage component of the Ishak system.⁶ *Proportion (%) of area of illustrated section showing Sirius red staining for collagen (collagen proportionate area).

Standish et al, Gut 2006

Computer assisted Digital Image Analysis (DIA) Using segmentation of digital images to measure collagen proportionate area (CPA)

Computer-Assisted Image Analysis of Liver Collagen: Relationship to Ishak Scoring and Hepatic Venous Pressure Gradient

Vincenza Calvaruso,¹* Andrew Kenneth Burroughs,¹* Richard Standish,² Pinelopi Manousou,¹ Federica Grillo,² Gioacchino Leandro,³ Sergio Maimone,¹ Maria Pleguezuelo,¹ Ilias Xirouchakis,¹ Gian Piero Guerrini,¹ David Patch,¹ Dominic Yu,⁴ James O'Beirne,¹ and Amar Paul Dhillon²

Relationship between CPA and HVPG

	Univariate Analysis		Multivariate Analysis		
	OR (95% CI)	P Value	OR (95% CI)	P Value	
Predictor of HVPG \geq 6 mm Hg					
Ishak grading score		< 0.0001	1.214 (0.940-1.567)	0.138	
Ishak staging score		< 0.0001	1.372 (0.979-1.923)	0.067	
Collagen proportionate area (%)		< 0.0001	1.206 (1.094-1.331)	<0.001	
Predictor HVPG \geq 10 mm Hg					
Ishak grading score		0.003	1.126 (0.812-1.561)	0.477	
Ishak staging score		< 0.0001	1.577 (1.000-2.482)	0.05	
Collagen proportionate area (%)		< 0.0001	1.105 (1.026-1.191)	0.009	

Calvaruso V et al, Hepatology 2009

Invasive and non invasive evaluation of disease progression in chronic viral hepatitis

Search for early predictor of decompensation

Search for early predictor of HCC

Search for predictor of progression rate to cirrhosis

Spleen-related Non Invasive Indexes and Alghorythms

Spleen stiffness measurement

Liver stiffness measurement

Serum markers: Direct/Indirect

Serum markers:predictors of liver related outcomes

Liver biopsy (PC	or TJ): quantitative sta	ging of		
Eany to advanced liver fibrosis	Eany to advanced Cimosis without liver fibrosis clinical manifestations		Liver Failure	
rivi o vo mining	<	H	4	
Advanced chronic liver disease (ACLD)				

CPA correlates with HVPG and predict decompensation in patients with recurrent HCV infection and liver cirrhosis

CPA correlates with HVPG

CPA predicts decompensation

Decompensation time (months)

Clinical and histological associations with CSPH in 43 patients with recurrent HCV infection, and Ishak stage 5 or 6 after OLT

	Univariate analysis HVPG			Multivariate analysis		
	<6 mmHg	≥ 6 mmHg	<i>P</i> -value	OR (95% CI)	<i>P</i> -value	
Ishak grading score	5 (3–6)	6 (4–7)	0.188			
Ishak staging score = 6	4/14 (28.6%)	13/28 (46.4%)	0.323			
CPA (%)	12.0 (7.5–17.2)	17.4 (13.0–24.0)	0.096	1.057 (0.978–1.142)	0.165	
CPS	6.0 (5–7)	5 (5–8)	0.354			
		HVPG		OR (95% CI)	<i>P</i> -value	
	< 10 mmHg	\geq 10 mmHg	<i>P</i> -value			
Ishak grading score	6 (4–6)	6 (4.5–7)	0.723			
Ishak staging score = 6	11/29 (37.9%)	5/13 (38.5%)	0.823			
CPA (%)	15.7 (8.2–19.0)	19.2 (16.0–28.7)	0.054	1.085 (1.004–1.172)	0.040	
CPS	5 (5–7)	6.0 (5–10)	0.550			

Calvaruso V, et al. Journal of Gastroenterology and Hepatology 2012

Digital Image Analysis of Liver Collagen Predicts Clinical Outcome of Recurrent Hepatitis C Virus 1 Year After Liver Transplantation

Collagen proportionate area (CPA) predicts clinical decompensation in patients with liver cirrhosis

Tsochatzis E, et al. Journal of Hepatology 2014

Predictors of clinical decompensation at the

time of baseline biopsy in 69 patients with cirrhosis

Variable	OR	95% CI	<i>p</i> value
Model 1			
CPA	1.249	1.101-1.417	0.001
Laennec			n.s.
Model 2			
CPA	1.245	1.119-1.385	<0.001
Kumar			n.s.
Model 3			
CPA	1.249	1.101-1.416	0.001
Septal thickness			n.s.
Nodular size			n.s.
Model 4			
CPA	1.292	1.127-1.482	<0.001
Septal thickness			n.s.
Nodular size			n.s.
Model 5			
CPA	1.196	1.054-1.357	0.005
MELD	1.383	1.111-1.720	0.004

Tsochatzis E, et al. Journal of Hepatology 2014

Collagen proportionate area (CPA) predicts portal hypertension and clinical decompensation in patients with HCV cirrhosis

Calvaruso V, et al. Alimentary and Pharmacological Therapy 2014

Free of events survival in patients with HCV cirrhosis according to CPA

Calvaruso V et al. APT 2014.

Risk factors for liver decompensation (LD) in 118 patients with biopsy proven HCV cirrhosis, prospectively evaluated by CPA

	ΝοΙΟ	LD Univariate ar	Univariate analysis	Multivariate analysis	
	98 pts* (85.6%) 17 pts (14.4%)		P-value	HR (95% CI)	P-value
Age (years, mean \pm s.d.)	56.5 ± 9.4	60.0 ± 7.2	0.148	_	
Gender (% males)	58 (59.1)	7 (41.1)	0.153	-	
Platelets ($ imes$ 109/L, mean \pm s.d.)	142.7 ± 44.4	107.3 ± 40.0	0.003	1.00 (0.98–1.02)	0.223
AST (IU/L, mean \pm s.d.)	113.2 ± 67.1	108.8 ± 53.2	0.800		
ALT (IU/L, mean \pm s.d.)	155.2 ± 94.1	133.6 \pm 72.2	0.389		
Prothrombin time (%, mean \pm s.d.)	90.2 ± 13.3	93.7 ± 10.4	0.325		
Bilirubin (mg/dL, mean \pm s.d.)	0.9 ± 0.4	1.0 ± 0.5	0.258		
Albumin (g/dL, mean \pm s.d.)	4.2 ± 0.4	3.7 ± 0.5	< 0.001	0.12 (0.04–0.43)	0.001
CPA ≥18% (%)	28 (28.6)	14 (82.3)	< 0.001	3.99 (1.04–11.45)	0.036
Presence of oesophageal varices (%)	24 (24.5)	13 (76.5)	< 0.001	8.15 (2.31–28.78)	0.001
No SVR (%)	70 (71.4)	16 (94.1)	0.043	3.68 (0.40–38.05)	0.244

Liver collagen in cirrhosis correlates with portal hypertension and liver dysfunction

Forty-eight consecutive liver transplantation patients with established cirrhosis

Hepatic venous pressure gradient (HVPG) and serum markers of liver failure determined prior to transplantation.

CPA assessed in the explanted livers.

CPA showed significant correlations with HVPG and with various surrogate markers of hepatic dysfunction including albumin, bilirubin, INR, MELD score and Child-Pugh score.

CPA reliably discriminated HVPG ≥10 mmHg (AUROC 0.923, p < 0.001).

Nielsen K, APMIS. 2014 Dec;122(12):1213-22

Take home messages

Collagen continues to accumulate even when the biopsy stage is cirrhosis

CPA measurement is a morphometric methods that continuously quantify collagen accumulation across the full spectrum of disease with no upper limit

CPA scores HCV cirrhosis with a continuous scale and predicts clinical outcomes.

Research agenda

Evaluate the role of CPA, alone or combined with other tools, on the prediction of liver decompensation in liver disease of different etiology

Evaluate if CPA could act as a histological standard for TE or other noninvasive markers of fibrosis.

Focus

Replacing a crystal ball with a calculator in predicting liver disease outcomes

Scott L. Friedman*

Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States

See Articles, pages 934–939 and pages 948–954