New Targets for HBV Therapy

Fabien Zoulim
Hepatology Department, Hospices Civils de Lyon
INSERM U1052, Cancer Research Center of Lyon
Lyon University, France
Virus suppression but persistence of intrahepatic viral DNA synthesis during Tenofovir therapy

New round of infection and/or replenishment of the cccDNA pool occur despite « viral suppression »

Boyd et al, J Hepatol 2016
Major virologic discoveries for HBV cure research programs

• Better knowledge of the viral life cycle
 Receptor – cccDNA - HBx

• Improvement of cell culture for target identification and drug screening
 Hepatoma cell lines – receptor and cccDNA formation
 Primary Human Hepatocytes and other culture systems

• Improvement of animal models for target identification and drug screening
 Liver humanized mouse models

• Identification & characterization of novel targets

New treatment concepts for HBV cure

- Therapy
- Functional Cure
- Complete Cure

- HBVDNA
- HBsAg
- Anti-HBsAb
- cccDNA

SERUM

LIVER
Mechanisms of viral persistence

cccDNA reservoir
Antigenic load
Liver tolerance
HBV persistence

Defective CD8+ response
Defective B cell response
Inefficient innate response

Entry inhibitors
Core modulators
Targeting cccDNA
Polymerase inhibitors
RNA interference
Egress Inhibitors
Targeting HBx
Core modulators

Testoni et al, Hepatology 2015; Liver International 2016
The main targets

- Vaccine therapy
- Check-point inhibitors
- Blockade of immune-suppressive cytokines
- Antiviral cytokines
- Chimeric antigen Receptors (CAR)
- TLR agonists

Testoni et al, Hepatology 2015; Liver International 2016
Model for HBV entry in hepatocytes and development of entry inhibitors

Entry inhibitors
Myrcludex (pre-S1 peptide)
Blank et al, J Hepatol 2016
Bogomolov et al, J Hepatol 2016

Ezetimib
Cyclosporin

Li et al, elife 2012; Urban et al, Gastroenterology 2014
Targeting cccDNA, the viral minichromosome

- cccDNA replenishment
- cccDNA formation
- cccDNA degradation
- cccDNA loss
- cccDNA silencing

Lucifora et al, Science 2014
Belloni et al, JCI 2012
Koeniger et al, PNAS 2014
Durantel&Zoulim, J Hepatol 2016
Model for cccDNA degradation

IFNalpha /Lymphotoxin beta can induce APOBEC3A/B dependent degradation of HBV cccDNA

Lucifora et al, Science 2014; Shlomai & Rice, Science 2014

Similar observation with IFNγ and TNFα – Xia et al, Gastroenterology 2015
Challenges in targeting cccDNA

Further knowledge required

Specificity for cccDNA?
Delivery?

Partial effect?
Efficacy in vivo?

Off-target effect?
Delivery?

RC-DNA > cccDNA conversion?
anti-host DNA repair factors

Further knowledge required

Modified from Nassal, Gut 2015

Targeting the HBV capsid with capsid assembly modulators

BAY-41-4109 Core + pgRNA AT-130

Tyrosine NVR 3-778

AAG pol Assembly (cf. Campagna et al. J. Virol. 2013)

GLS-4 Assembly rcDNA-containing nucleocapsid

Retrotranscription + DNA replication

Winne et al., Mol. Cell 1999
Phase 1b clinical trial: CpAM NVR 3-778 reduces serum HBV DNA and RNA

Pre-clinical evaluation in hepatocyte culture and chimeric mouse models

Serum HBV DNA: mean 1.7 log reduction (600 mg BID)

Serum HBV RNA: mean 0.86 log reduction (600 mg BID)

Cohort I: 600 mg BID
Decrease of circulating HBV RNA

Yuen M-F, et al. AASLD 2015, San Francisco. #LB-10
HBsAg targeting strategies

- HBsAg clearance an **endpoint of therapy**
- Decline in HBsAg levels may **restore the antiviral activity of exhausted T cells**
- **Several strategies** in evaluation
 - RNA interference (SiRNA): « gene silencing »
 - Nucleic acid polymers (NAPs): HBsAg release
 - HBs antibodies
SiRNA ARC-520 produces deep and durable knockdown of viral antigens and DNA in a phase II study

HBsAg reduction in ETV naive patients with a single 4 mg dose (cohort 7)

Impact of integrated sequences on siRNA efficacy

Will this result in restoration of immune responses?

Yuen M-F, et al. AASLD 2015, San Francisco. #LB-9
Towards combination therapy

Effect of a triple combination therapy on viral antigen load in a humanized mouse model
Restoration of antiviral immunity

Repression of intrahepatic expression of innate immunity genes in CHB patients

Lebossé, Testoni et al, J Hepatol 2017
Recovery of T cell response is possible after resolution of chronic HBV

Rehermann B, J Clin Invest. 1996; 97: 1655

Boni C, Gastroentrol 2012; 143: 963
PD-1 blockade enhances HBV-specific T cell function

In liver and blood

With differential impact based on HBeAg status

Fisicaro P, Gastroenterol 2010; 138: 682

Park J, Gastroenterol 2016; 150: 684
Clinical Evaluation of Immunotherapeutics

• **Innate Immunity**
 - TLR-7 agonists (other TLR agonists?): inducing endogenous type I IFN responses
 - Targeting RIG-I: Restoration of endogenous IFN production & interference on Polymerase/pgRNA interaction
 - Restoring innate responses: blocking virus specific functions

• **Adaptive immunity**
 - Therapeutic vaccines: stimulating HBV specific CD4 and CD8 T cells
 - Check-point inhibitors: restoration of specific CD4 and CD8 T cells
 - T Cell engineering: redirecting T cells to infected hepatocytes
HBV cure - New treatment concepts – Will we need combination of DAA and immune therapy?
HBV cure - Where are we going?

- Towards improved therapies & cure within the next decade!
Acknowledgements

Hepatology Unit

INSERM U1052

Collaborations

C. Caux, Lyon CRCL
FL. Cosset, Lyon CIRI
K. Lacombe, Paris
M. Levrero, Rome
P Lampertico, Milan
A Craxi, Palermo
JP Quivy, Institut Curie
U Protzer, Munich
M Dandri, Hamburg
S Locarnini, Melbourne
P Revill, Melbourne

Francois Bailly
Samir Benmaklouf
Marie Ecochard
Kerstin Hartig
Fanny Lebossé
Massimo Levrero
Sylvie Radenne
Marianne Maynard
Christian Trépo

David Durantel
Barbara Testoni
Julie Lucifora
Bernd Stadelmeyer
Maelle Locatelli
Fleur Chapus
Aurore Inchauspé
Maud Michelet
Judith Fresquet

Marc Bonin
Thomas Lahlali
Lucyna Cova
Romain Parent
Anna Salvetti
Birke Bartosch
Eve Pecheur
Boyan Grigorov
Christophe Combet
HBV cure - A highly dynamic drug discovery effort

Testoni & Zoulim, Hepatology 2015; Durantel & Zoulim, J Hepatol 2016
Definition of Cure

Durantel & Zoulim, J Hepatol 2016;
Realistic definition of HBV cure

<table>
<thead>
<tr>
<th></th>
<th>Complete cure</th>
<th>Idealistic functional cure</th>
<th>Realistic functional cure</th>
<th>Partial “cure”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical scenario</td>
<td>Never infected</td>
<td>Recovery after acute HBV</td>
<td>Chronic HBV with HBsAg loss</td>
<td>Inactive carrier off treatment</td>
</tr>
<tr>
<td>HBsAg</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>Anti-HBs</td>
<td>Positive/negative</td>
<td>Positive</td>
<td>Positive/negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Serum HBV DNA</td>
<td>Not detected</td>
<td>Not detected</td>
<td>Not detected</td>
<td>Low level or not detected</td>
</tr>
<tr>
<td>Hepatic cccDNA, transcription</td>
<td>Not detected</td>
<td>Detected</td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>Integrated HBV DNA</td>
<td>Not detected</td>
<td>Detected?</td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>Liver disease</td>
<td>None</td>
<td>None</td>
<td>Inactive, fibrosis regression over time</td>
<td>Inactive</td>
</tr>
<tr>
<td>Risk of HCC</td>
<td>Not increased</td>
<td>Not increased</td>
<td>Declines with time</td>
<td>Risk lower vs. immune active phases</td>
</tr>
</tbody>
</table>

© 2016 AMERICAN ASSOCIATION FOR THE STUDY OF LIVER DISEASES WWW.AASLD.ORG
The main targets