

18 January 2011

HBeAg-negative chronic hepatitis B: Why do I treat my patients with PEG-IFN?

Pietro Lampertico

U.O. Gastroenterologia I
Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico
Università di Milano

Sustained immune control provides clinical benefits

- Freedom from potentially life-long treatment¹
- No long-term safety concerns¹
- Decreased risk of cirrhosis and liver cancer²

Has been shown to lead to HBsAg clearance during posttreatment follow-up of patients after a finite course of PEG-IFN alfa 2a therapy³

^{2.} EASL. J Hepatol 2009

^{3.} Marcellin et al. APASL 2010

Inactive carrier status represents immune control

*HBV DNA: < 2000 IU/ml

Adapted from Wong & Lok. Arch Intern Med 2006

Sustained immune control is the critical step towards continued success

Peg-IFN α 2a in HBeAg neg CHB Response by genotype

HBV DNA < 20,000 cp/ml at 24-week post-treatment

Peg-IFN in <u>geno-D</u>, HBeAg-negative CHB Sustained HBV DNA suppression

¹ HBV DNA <4000 U/ml ² HBV DNA <2000 U/ml

Marcellin P et al, EASL 2004 Piccolo P et al, Antiv Therapy 2009 Rijckborst V. et al, Am J Gastroenterol 2010 Lampertico P et al, EASL 2010

HBsAg clearance increases post-treatment following a 48-week course of Peg-IFN α2a

N=230 treated with PEG-IFN α -2a ± lamivudine

Rate of HBsAg clearance in genotype D is similar to the overall population

230 patients with HBeAg-negative CHB treated Peg-IFN alfa 2a with ± lamivudine

A high proportion of patients with HBsAg clearance also achieve seroconversion

230 patients with HBeAg-negative CHB treated with Peg-IFN alfa 2a ± lamivudine

of Peg-IFN alfa 2a patients who achieved HBsAg clearance also achieved HBsAg seroconversion at year 5 (N=15/28)

Marcellin et al. Hep Dart 2009

How can we improve PEG-IFN efficacy?

- combination therapy
- extension of therapy
- pre-treatment predictors of response
- on-treatment predictors of response

Combination therapy in HBeAg neg CHB?

- Peg-IFN vs Peg-IFN + LAM¹
- Peg-IFN vs Peg-IFN + ADV²
- Peg-IFN <u>vs</u> Peg-IFN + RBV³

Combination therapy in HBeAg neg CHB?

• Peg-IFN

How can we improve PEG-IFN efficacy?

- combination therapy
- extension of therapy
- pre-treatment predictors of response
- on-treatment predictors of response

Peg-IFN alfa-2a in HBeAg-negative CHB: 48 vs 96 weeks of therapy

A multicenter, randomized, controlled, open-label study sponsored by F. Hoffmann-La Roche 22 centers, planned sample size N=250

Virological response rates during post-treatment follow up (ITT analysis)

HBsAg response at EOT and during post-treatment follow up (ITT analysis)

Summary of results of combination Arm C (ITT analysis)

Experimental arm (small sample size, not powered for statistical analysis vs Arms A and B)

Response parameter	End of treatment	6 months post-treatment	12 months post-treatment	
	N=25	N=25	N=25	
HBV DNA <2000 IU/mL	18 (72%)	5 (20%)	5 (20%)	
HBsAg clearance	1 (4%)	1 (4%)	0 (0%)	

EOT: end of therapy

How can we improve PEG-IFN efficacy?

- combination therapy
- extension of therapy
- pre-treatment predictors of response
- on-treatment predictors of response

IL28B Genotype May Not Impact Response to PegIFN for CHB

- CHB HBeAg(+) (n=40) and HBeAg(-) (n=45) treated with PegIFN and ADV for 48 weeks
- IL28B Genotyping to assess the relationship baseline factors and treatment response
- Baseline HBV DNA levels significantly lower among CC genotype, HBeAg(-)
- No significant difference in HBeAg seroconversion or HBsAg loss
- Conclusion: The relationship of IL28B and HBV treatment outcomes with IFN remains unclear

Relationship of IL28B Polymorphisms to Baseline HBV DNA

IL28B Polymorphisms and Treatment Response

	CC	СТ/ТТ
HBeAg(+)		
HBeAg seroconversion HBsAg loss	22% 11%	54% 15%
HBeAg(-)		
Viral load <2,000 IU/mL (SVR) HBsAg loss	57% 23%	36% 18%

IL28B Polymorphism May Predict HBsAg Clearance in Genotype D, HBeAg(-) Patients Treated with Interferon Alfa

- Retrospective study of role of IL28B polymorphism in interferon treatment in HBeAg(-) CHB pts
 - Treatment: standard IFN for 23 months, 11 years follow-up
 - Endpoint HBsAg loss
- Low baseline HBV DNA, high ALT levels and genotype CC of IL28B independently predicted HBsAg clearance
- IL 28B polymorphism may represent an additional pretreatment predictor of interferon response in HBeAg(-), genotype D patients with CHB

Predictors of HBsAg Loss by Multivariate Analysis

Factors	OR	(95% CI)	P value
HBV DNA <6 log cp/mL	9.9	(2.5 - 38.7)	0.001
ALT levels >136 IU/mL	5.3	(1.5 -17.9)	0.007
IL28B genotype CC	3.9	(1.2 -12.4)	0.023

How can we improve PEG-IFN efficacy?

- combination therapy
- extension of therapy
- pre-treatment predictors of response
- on-treatment predictors of response

HBeAg-negative CHB: HBsAg decline can distinguish between relapsers and responders

^{*} HBV DNA undetectable by PCR 1 year post-treatment

^{**} HBV DNA undetectable at EOT but detected in following 24 weeks

To early identify good responders

e-

HBsAg decline is significantly associated with sustained immune control

230 patients with HBeAg-negative CHB treated with peg-IFN alfa 2a ± lamivudine*

10% decline rule in genotype D patients from the PegBeLiver study

Genotype D patients with HBeAg-neg CHB treated with Peg-IFN alfa 2a for 96 weeks

To early identify non responders

PARC study: Study design

133 HBeAg-negative patients treated for 48 weeks with Peg-IFN alfa 2a ± ribavirin 80% were genotype D – conventionally regarded as difficult to treat

* Dosed by body weight: <75 kg: 1000 mg/qd; >75 kg: 1200 mg/qd

EOT: end of treatment

e-

PARC study: Combining on-treatment HBsAg and HBV DNA decline to identify non-response

Validation of PARC rule: Pooled analysis of phase 3 and PegBeLiver data (genotype D)

Validation of PARC rule: Pooled analysis of phase 3 and PegBeLiver data (genotype D)

Peg-IFN in HBeAg neg CHB: Conclusions

- Aim of anti-HBV therapy is to <u>cure</u> patients
- Peg-IFN is the only treatment option to <u>cure</u> HBeAg-neg, geno-D pts
- After 24 weeks of follow-up, 20% maintain a virological response
- After 5 years of follow-up, 50% of sustained responders clear HBsAg
- Response rates can be improved:
 - pre-treatment assessment (ALT, HBV DNA, IL28B)
 - extension of therapy up to 96 wks
 - early stopping rule (HBV DNA + qHBsAg at wk 12)

Goal: SVR at 50%, HBsAg loss at 25%!!

