How to use the virological tools for the optimal management of chronic hepatitis C (including resistance)

4th Paris Hepatitis Conference International Conference on the Management of Patients with Viral Hepatitis

Paris, 17.-18. January 2011

Stefan Zeuzem J.W. Goethe University Hospital Frankfurt, Germany

* No treatment shortening in patients with advanced fibrosis, cirrhosis, metabolic syndrome, insulin resistance, HIV/HCV coinfection, etc. No data for patients with persistently normal ALT levels.

- 1. No treatment shortening in patients with advanced fibrosis, cirrhosis, metabolic syndrome, insulin resistance, HIV/HCV coinfection, etc. No data for patients with persistently normal ALT levels.
- 2. Detectable HCV-RNA at week 24: discontinuation of treatment.
- 3. Treatment duration of 36, 48, 72 weeks in "slow-responders" is currently investigated in prospective trials.

Predictive value of achieving HCV RNA <50 IU/mL at wk 12 (pooled 72 wks vs 48 wks)

Ann Intern Med 2009;150:528-40

VIROLOGIC TOOLS IN THE ERA OF PEG-IFN AND RBV

- HCV Genotyping
- HCV RNA detection and quantification

Requirements for HCV RNA assays

- High specificity (risk of false positive results)
- High sensitivity (treatment duration, virologic response)
- Precise quantification (low vs. high VL, 2 log rule)
- Inclusivity for all HCV genotypes
- Comparability between assays (standard. IU)
- One assay for qualitative and quantitative measurement

HCV RNA Assays

	negative /	detectable/	detectable/
	undetectable	unquantifiable	quantifiable
Versant Qual. TMA	neg. (<5-10 IU/ml)		pos. (>5-10 IU/ml)
Versant Quant. bDNA	neg. (<615 IU/ml)		>615 IU/ml
Cobas Amplicor	neg. (<50 IU/ml)		pos. (>50 IU/ml)
Cobas Amplicor Mon.	neg. (<500 IU/ml)		>500 IU/ml
Cobas TaqMan	neg. (<10 IU/ml)	pos. (<15 IU/ml)	>15 IU/ml
RealTime HCV	neg. (<10 IU/ml)	pos. (<12 IU/ml)	>12 IU/ml

Result reporting is not identical in different labs and countries

Differences between commercial assays RealTime HCV versus Cobas TagMan

Michelin et al, J Clin Virol 2007;38:96-100

Differences in HCV RNA quantification between assay of 0.5 log (factor 3-4) !

Quantification in IU results from Standardization to the WHO Standard

 \square

WHO Standard vs. Cobas TaqMan and RealTime HCV

WHO Standard	RealTime HCV			Cobas TaqMan (CAP/CTM)		
Nominal input IU/mL (log ₁₀)	Mean (range) IU/mL	Mean (range) log ₁₀	Mean difference to WHO Standard	Mean (range) IU/mL	Mean (range) log ₁₀	Mean difference to WHO Standard
1,500 (3.2)	920 (674-1102)	3.0 (2.8-3.0)	- 0.2	3,064 (2,857-3,096)	3.5 (3.5-3.5)	+ 0.3
25,000 (4.4)	13558 (8997-16102)	4.1 (4.0-4.2)	- 0.3	43,489 (22085-69852)	4.6 (4.3-4.8)	+ 0.2

Mean, mean concentrations or mean log₁₀-transformed concentrations

Quantification differences between commercially available assays

		AccuGene m-HCV	bDNA		CAP/CTM	
GT	n	Mean concn. (IU/mL log ₁₀)	Mean concn. (IU/mL log ₁₀)	Difference to RealTime HCV	Mean concn. (IU/mL log ₁₀)	Difference to RealTime HCV
1	30	5.50	5.48	-0.02	6.22	0.72
2	12	5.96	5.74	-0.22	5.99	0.03
3	16	5.58	5.31	-0.27	5.36	-0.22
4	4	5.41	5.22	-0.19	4.14	-1.27
5	3	5.36	5.33	-0.03	5.45	0.09

GT, Genotype; Mean concn., mean HCV RNA concentrations Vermehren et al., J Clin Microbiol 2008

Single high viremic HCV genotype 4 samples may be even HCV RNA negative by the Cobas TaqMan assay

Does the sensitivity of the HCV RNA assay matter ?

- CAM (< 50 IU/mL) vs. CAP-CTM (< 15 IU/mL)
- RVR rates highly concordant
- No difference in SVR rates after shorter therapy in pts. with RVR (<50 IU/mL), RVR (<15 IU/mL), and RVR (undetectable by CAP-CTM)
 - 82% vs. 83% vs. 83% (HCV-1, tx duration 24 wks)
 - 95% vs. 95% vs. 94% (HCV-2,3, tx duration 16 wks)

Analysis of the limit of detection (LOD)

Limit of detection for real-time HCV

IU/ml	n	GT1	GT2	GT3	GT4	GT5	GT6
		pos	pos	pos	pos	pos	pos
50	12	12	12	12	12	12	12
25	12	12	12	12	12	12	12
12,5	12	12	12	12	12	12	12
6,25	12	12	12	12	10	12	12
3,125	12	8	9	8	10	10	10
LOD (II	U/ml)	5.4	5.2	5.4	8.9	4.7	4.7

Limit of detection for CAP/CTM HCV

IU/ml	n	GT1	GT2	GT3	GT4	GT5	GT6
		pos	pos	pos	pos	pos	pos
50	12	12	11	12	11	12	12
25	12	11	12	12	12	12	12
12,5	12	12	10	11	8	11	12
6,25	12	12	11	10	5	12	11
3,125	12	11	8	9	4	5	10
LOD (I	U/ml)	3.4	44.4	14.1	40.5	11.1	7.0

Vermehren et al., J Clin Microbiol 2008;46:3880-91

Positive and negative prediction of SVR at weeks 2 and 4 of SOC

- Treatment-naive patients with GT1 chronic hepatitis C
- Treatment with albinterferon alfa-2b or peginterferon alfa-2a (ACHIEVE 1 trial)
- HCV RNA neg at wk 2: PPV 100%
- HCV RNA > 2log at wk 2: PPV 88-97%
- VL > 6log at wk 2: NPV 82-100%
- VL > 5.5log and HCV RNA decline < 2log at wk 4: NPV 100% (4-13% of pts., specificity 12-29%)

VIROLOGIC TOOLS IN COMBINATION WITH IL28B IN THE ERA OF PEG-IFN AND RBV

HCV Decline by IL28B SNP Genotype Patients infected with HCV-1

AU Neumann, S Bibert, B Haagmans, A Soulier, F Negro, M Lagging, C Ferrari, S Zeuzem, J-M Pawlotsky, SW Schalm, P-Y Bochud for the DITTO-HCV group. EASL 2010, Late-breaker poster

Viral Kinetics by IL28B SNP HCV genotype 1 Caucasian patients

rs12979860 Genotype	Ν	Baseline HCV-RNA	1 st phase decline	2 nd phase slope	%RVR
		(log IU/ml)	(log IU/ml)	(log IU/ml/wk)	
CC	37	6.4	2.03	0.72	32%
СТ	85	6.1	0.91	0.56	16%
тт	26	6.0	0.70	0.44	12%
Difference CC vs CT+TT		p<0.01	p<0.0001	p<0.001	p<0.02

AU Neumann, S Bibert, B Haagmans, A Soulier, F Negro, M Lagging, C Ferrari, S Zeuzem, J-M Pawlotsky, SW Schalm, P-Y Bochud for the DITTO-HCV group. EASL 2010, Late-breaker poster

Differences Between IL28B Genotypes in RVR and in 2nd Phase Slope are Driven by the Effect of IL28B SNP on 1st Phase Decline

	Patients with 1 st phase decline < 1.0			
rs12979860 genotype	Ν	2 nd phase slope	%RVR	
CC	2	0.54-	1/2	
СТ	50	0.48-	10%	
TT	18	0.36-	0%	
Difference CC vs CT+T1	Г	NS	NS	
	Patier	nts with 1 st phase dec	cline > 1.0 log	
rs12979860 genotype	Ν	2 nd phase slope	%RVR	
CC	35	0.73-	31%	
СТ	35	0.66-	26%	
TT	8	0.60-	38%	

Predictive value of IL28B and VK

- CC IL-28B type (rs12979860) is associated with a greater likelihood of RVR (28% vs 5% and 5%; P<0.0001), cEVR (87% vs 38% and 28%; P<0.0001), and SVR (69% vs 33% and 27%; P < .0001) compared with CT and TT.
- CC IL-28B type is the strongest pretreatment predictor of SVR (OR 5.2; 95% CI, 4.1-6.7).
- RVR was a strong predictor of SVR regardless of IL-28B type.
- In non-RVR patients, the CC IL-28B type is associated with a higher rate of SVR (Caucasians, 66% vs 31% and 24%; P < .0001).

VIROLOGIC TOOLS IN THE ERA OF PEG-IFN AND RBV PLUS DIRECT ANTIVIRAL AGENTS

Basic Characteristics of Direct Antiviral Agents (DAA)

	Efficacy	Genotype dependency	Barrier to resistance
NS3A (protease inhibitors)	+++	+	+ - ++
NS5A	+++	+ - ++	+ - ++
NS5B (nucleosides)	+ - ++	+++	+++
NS5B (non-nucleosides)	+ - ++	+	+

HCV Genotyping

- Several DAAs (in particular NNI) have different antiviral activity in HCV subtypes (i.e. HCV-1a vs. 1b)
- DAAs may have lower activity in rare geno/subtypes (which are mistyped by assays)
- HCV variants may have different sub/genotypes in different genes (chimera)

On-treatment response definitions

- RVR: rapid virologic response = undetectable HCV RNA at week 4
- pEVR: partial early virologic response = more than 2log decline at week 12
- cEVR: complete early virologic response = HCV RNA undetectable at week 12
- eRVR: extended rapid virologic response = undetectable HCV RNA at week 4 and 12 or week 4-20

Emergence of resistance according to different HCV subtypes

 Different number of nucleotide changes may be required to create a single amino acid change which is associated with a lower susceptibility to a HCV protease inhibitor

 HCV-1a 	AGG → AAG (R155) (R155K)	
• HCV-1b	CGG → AGG (R155) (R155)	AGG → AAG (R155) (R155K)

Emergence of double variants according to different HCV subtypes

- The double variant V36M + R155K is associated with a markedly lower susceptibility to telaprevir and other HCV PIs
- HCV-1a: 2 steps required (clinically observed)
- HCV-1b:
- 4 steps required (not yet clinically observed)

Changes In Drug Susceptibility: Detection Of Resistance

Sequence Analysis

Detects specific mutations that are known to decrease susceptibility to antiviral agents. Requires prior knowledge of these mutations and their individual or combined impact on drug susceptibility.

Phenotypic Analysis

Determines drug concentrations needed to inhibit viral replication. Inhibitory concentration (IC): drug concentration required to inhibit viral replication by 50% or 90% (IC50 or IC90). Less susceptible (resistant) viruses will require *more* drug to be inhibited, thus an *increase* in IC50 or IC90.

Conclusions

- Optimal antiviral treatment depends on HCV genotyping, HCV RNA quantification, and sensitive detection of HCV RNA
- Currently available assays are good, but not yet optimal
- Further improvements may become important in the era of treatment with DAAs
 - Target-specific genotyping
 - HCV subtyping
 - Standardized and clinically validated HCV RNA cut-off levels for eRVR definitions
 - Resistance testing (genotypic, phenotypic)