
SOMATOSTATIN RECEPTORS IN HEPATOCELLULAR CARCINOMA

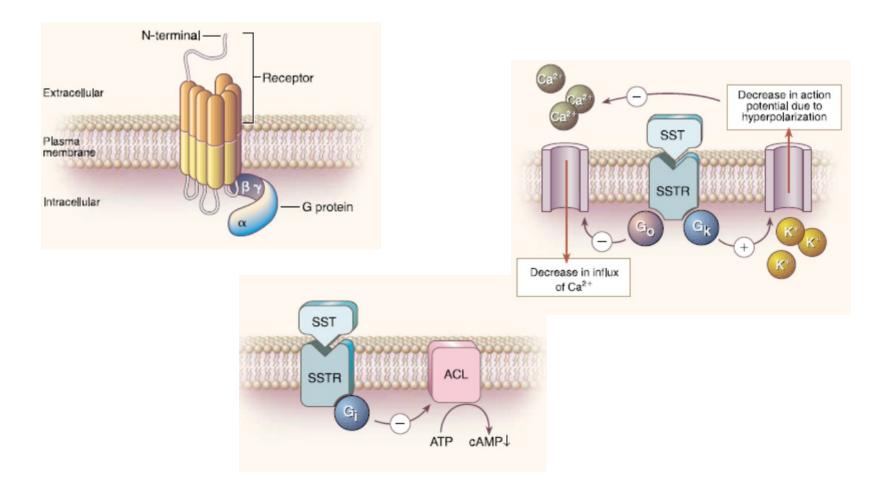
Marie LEQUOY Saint-Antoine Hospital, Department of Hepatology, Paris, France

Somatostatin : SST

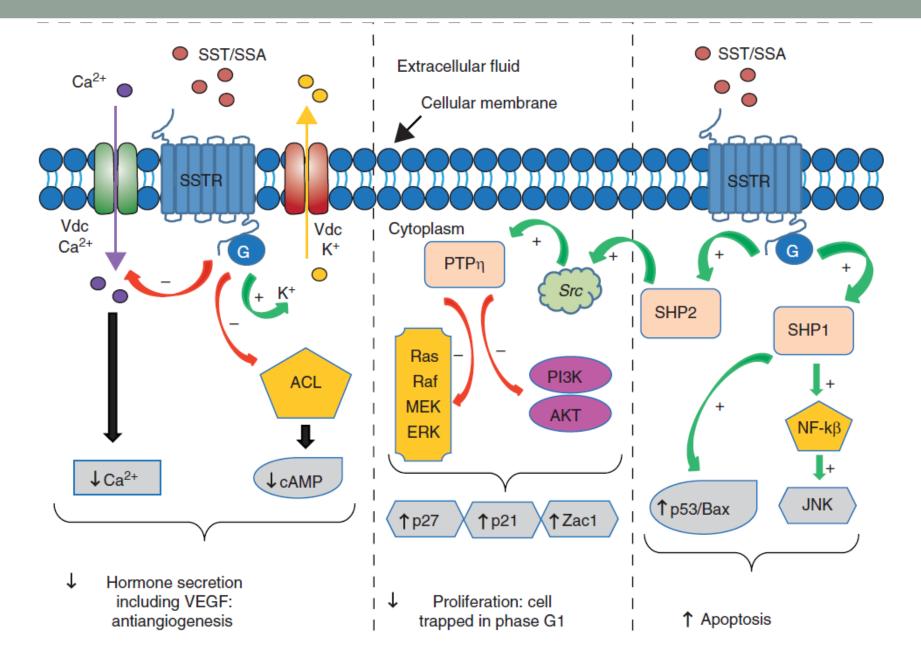
- Somatostatin (SST) protein : 2 active forms (alternative cleavage of a single one) : SST14 and SST28
- Somatostatin acts as an inhibitory peptide of various secretory and proliferative processes
- Effect on the hypothalamus : inhibition of GH, TSH and PRL

Effects of SST on gastrointestinal tract

Reduction of :


Gastrin cholecystokinin Glucagon secretin VIP GIP insulin

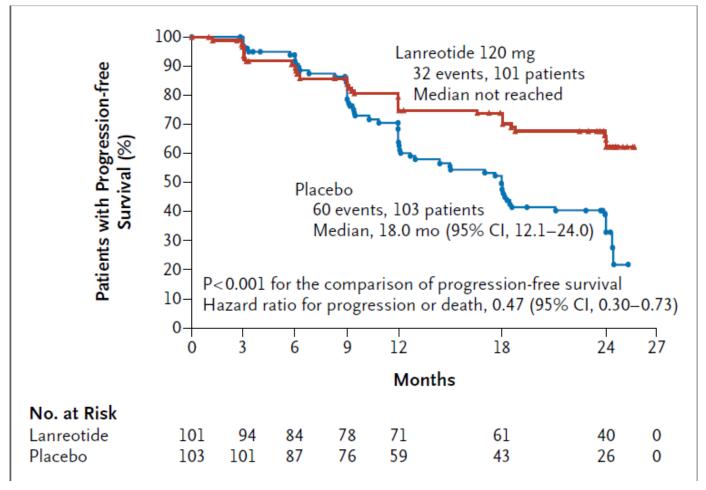
Lambert et al 1996


Somatostatin receptors : SSTRs

- 5 subtypes : SSTR1, SSTR2, SSTR3, SSTR4 and SSTR5
- Both SST14 and SST28 binds all SSTR subtypes with high affinity
- Somatostatin analogs (octreotide, lanreotide and pasireotide) binding :
 - SSTR2 with high affinity
 - SSTR1, 3 and 5 with much less affinity
 - no binding demonstrated for SSTR4

SSTR

Lambert et al 1996



Abdel-Rahman et al. 2014

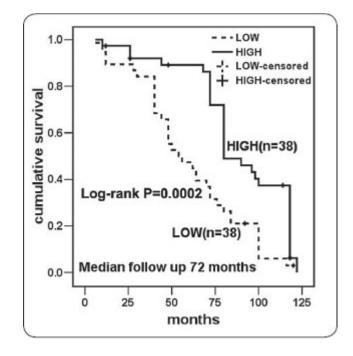
SSTRs and solid tumors

- Many translational studies : 2 main failures :
 - Breast Cancer (Ingle et al 1999- Bajetta et al 2002)
 - Colorectal cancer (Goldberg et al 1995)
- SSA therapy has been demonstrated in advanced NETs in 2 large randomized studies reporting significant and clinically relevant benefit :
 - PROMID (Rinke *et al* 2009)
 - CLARINET (Caplin *et al* 2014)

NET = the only clinical setting where SSAs can be used for tumor control outside a clinical trial

Progression-free Survival (Intention-to-Treat Population).

Caplin ME et al. NEJM 2014


SSTR expression in HCC?

SSTR expression in HCC

1st Author	journal	Origin of tissue	Number of samples	Results for PCR	Results for IHC
Blaker	J hepatol 2004	resection, LT	56 for IHC 6 for PCR	-	SSTR 5 (75%) > SSTR3 (64%) > SSTR1 (46%) > <mark>SSTR2 (41%)</mark> SSTR 4 : 0%
Reynaert	Gut 2004	resection, LT	6 T/NT 3 normal liver	Positive for SSTR1 and 2 but no variation between T/NT SSTR 3 and 4 : almost undetectable in T	Nomal liver : 0 Cirrhotic hepatocytes : SSTR1> SSTR2, 3, 4, 5 HCC / SSTR1, 2> SSTR3, 4
Nguyen- Khac	Cancer biol ther 2009	Biopsies	7 T	-	SSTR2A detected in cytoplasm and at membran in 6 patients /7
Cebon	Brit J Cancer 2006	Archival paraffin- embedded tissue	20T	-	Not enough receptors for meaningful staining with the antiserum SS800.
Verhoef	Dig surg. 2007	Resection	45	-	SSTR2 detected by IHC in 30 tumors (67%)
Кос	Hepatogast ro. 2013	Biopsies	41	-	SSTR 1 (76%), SSTR5 (51%)
Reubi	Gut 1999	Resection/ biopsies	59	-	SSTR1-5 expression using radiolabelled octreotide in 41% of HCC no expression in normal liver.
Xie	Ai Zheng 207 (chinese)		40 HCC 40 cirrhosis	-	In HCC : SSTR2 (70%)> SSTR5 (67%) >SSTR3(50%) surrounding cirrhotic tissue higher than HCC

Prognostic value of SSTR expression : one positive study

- 76 resected HCC HBV related and paired non tumoral tissue
- Immunohistochemical results :
 - 38 patients (50%) low SSTR-2 expression in T
 - 32 patients (42%) high SSTR-2 expression in T .
 - Improved survival in the high SSTR-2 group

SSAs : treatment for HCC? Preclinical studies

- In vitro :
 - Antiproliferative and Pro-apoptotic activity of lanreotidin HepG2 cells (Raderer International J of Oncol 2000)
 - Activation of SSTR1 reduces migration of hepatoma cells and hepatic stellate cells (Reynaert, Gut 2004)
 - Octreotide inhibited neovascularization and endothelial cell proliferation with a down regulation of VEGF (Jia *et al* 2009)
- In animal models of HCC:
 - inhibits tumor growth and occurrence (Wang *et al* Natl Med J China, 2001, Jia *et al*. 2009, Borbath *et al* 2010)
 - Using nude mice xenograft : Inhibiton of the growth of HCC in mice treated with octreotide (Hua *et a*l chemotherapy 2009)

Clinical experience SSAs in advanced HCC

	Octreo		Contr			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% C	M-H. Random. 95% Cl	
1.1.1 6-mo suvival rate							L	
Barbare 2009	76	135	73	137	23.40%	1.06 [0.85, 1.31]	Ŧ	
Becker 2007	25	60	25	59	14.68%	0.98 [0.64, 1.50]		
Dimitroulopoulos 2007	26	30	18	30	18.52%	1.44 [1.04, 2.00]	-8-	
Kouroumalis 1998	21	28	11	30	11.73%	2.05 [1.22, 3.43]		
Wu 2001	9	12	3	13	4.09%	3.25 [1.14, 9.24]		
Yang 2003	19	32	10	33	9.87%	1.96 [1.08, 3.54]		
Yuen 2002	5	35	5	35	3.47%	1.00 [0.32, 3.15]		
Zhang 2004	8	20	7	25	6.04%	1.43 [0.63, 3.26]		
Zhang 2010	12	21	8	24	8.20%	1.71 [0.87, 3.37]	+=	
Subtotal (95% CI)	201	373	160	386	100.00%	1.41 [1.12, 1.77]	•	
Test for heterogeneity: C	hi² = 14.2	6, df = 8	3 (P = 0.0	8), I² =	43.9%			
Test for overall effect: Z =	= 2.95 (P =	= 0.003)					
1.1.2 12-mo suvival rate	,							
Barbare 2009	38	135	41	137	19.12%	0.94 [0.65, 1.36]		
Becker 2007	14	60	17	59	17.60%	0.81 [0.44, 1.49]		
Dimitroulopoulos 2007	9	30	1	30	7.83%	9.00 [1.21, 66.70]		
Kouroumalis 1998	16	28	4	30	14.75%	4.29 [1.63, 11.27]		
Wu 2001	4	12	0	13	4.89%	9.69 [0.58, 163.02]		
Yang 2003	12	32	1	33	7.94%	12.38 [1.71, 89.74]		
Yuen 2002	4	35	1	35	7.21%	4.00 [0.47, 34.02]		
Zhang 2004	3	20	2	25	9.51%	1.88 [0.35, 10.16]		
Zhang 2010	8	21	2	24	11.15%	4.57 [1.09, 19.19]		
Subtotal (95% CI)	108	373	69	386	100.00%	2.66 [1.30, 5.44]	-	
Test for heterogeneity: C	hi² = 28.0	0, df = 8	B (P = 0.0	005), l ²	= 71.4%			
Test for overall effect: Z =	= 2.67 (P =	= 0.008)					
1.1.3 24-mo suvival rate)						_	
Barbare 2009	11	135	19	137	39.46%	0.59 [0.29, 1.19]		
Becker 2007	5	60	10	59	32.65%	0.49 [0.18, 1.35]		
Dimitroulopoulos 2007	2	30	0	30	9.08%	5.00 [0.25, 99.95]		
Yang 2003	4	32	0	33	9.66%	9.27 [0.52, 165.55]		
Zhang 2010	2	21	0	24	9.15%	5.68 [0.29, 112.07]		
Subtotal (95% CI)	24	278	29	283	100.00%	1.08 [0.40, 2.94]		
Test for heterogeneity: C	hi² = 7.71	df = 4	(P = 0.10), $ ^2 = 4$	8.1%		0.05 0.2 1 5 2	
	Test for overall effect: Z = 0.15 (P = 0.88)							

Ji et al 2011

Only one positive randomised study

	Octreotide n=31	Non-treated n=30	SSTR negative N=66
Overall survival time	49 ± 6 wk	28 ±1 wk (p<0.01)	28 ±2 wk

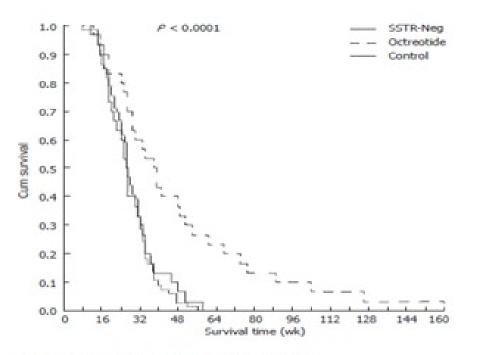


Figure 3 Survival probabilities in the groups of the study.

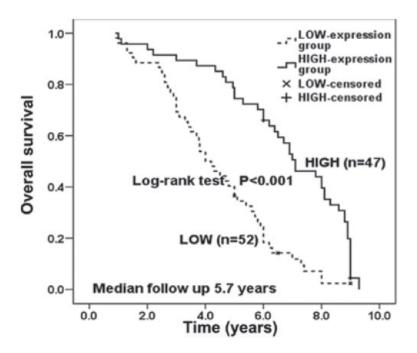
Dimitrilopoulos et al W J of gastroentero 2007

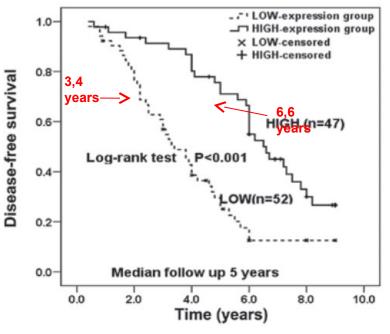
On going studies

- Phase II Trial with pasireotide (60 mg IM/28d) in patients with Unresectable Hepatocellular Carcinoma (after progression with sorafenib). (Still recruiting)
- Phase II trial single arm with pasireotide (60 mg IM/28d) and everolimus (7,5 mg/jour) in patients with advanced or metastatic HCC intolerant to sorafenib (end of screening 2014)

Limits of these studies

- Heterogeneity of patients and tumors
- Small number of patients
- Many retrospective studies
- Lack of patients screening relying on the SSTR status (especially SSTR2)
- Prognostic and predictive influences of SSTR expression cannot be evaluated in the setting of SSA treatment


Rational for SSAs as Adjuvant treatment in HCC?


- Liver resection for HCC is associated with early recurrence and poor survival.
- predictors of early recurrence and poor survival :
 - Vascular invasion (both macroscopic and microscopic),
 - poor tumor differentiation
 - tumor size
 - cytokeratin-19 (CK-19) (>5%) (hepatobiliary progenitor marker)
 - AFP levels > 200 500 ng/ml

Llovet JM, Schwartz M, Mazzaferro V. Semin Liver Dis. 2005 Park SK, Lee JN, et al. Korean J Intern Med. Jul 2013 Colecchia A et al. World J Gastroenterol. may 2014 Govaere O, Roskams T. Clin Liver Dis. may 2015

SSAs as adjuvant treatment in HCC : one recent study

99 patients resected for early stage HBV related HCC All patients treated with LAR octreotide SSTR2 and 5 mRNA expression levels evaluated with qPCR (No IHC) SSTR2 and 5 high expression : 64% of recurence versus 83% in low expression group (p=0,033)

Liu et al Oncol letter 2013

Rational for SSAs as Adjuvant treatment in HCC?

- Characterization of the SSTR status in a panel of resected HCC and paired non liver tissue (homogeneous population) :
 - SSTR2, SSTR3 and SSTR5 expression : transcript and protein by PCR and IHC
 - SSTR1, SSTR5TMD4 and SSTR5TMD5 (two truncated forms of SSTR5) only PCR.
- Correlations between high SSTR2 membrane staining and specific tumor or patient characteristics and/or peculiar clinical outcome were investigated (especially poor prognosis predictors)

THANK YOU FOR YOUR ATTENTION