9th Paris Hepatitis Conference Hepatitis B: What's new in hepatitis B?

New Therapeutic Perspectives?

Jia-Horng Kao MD, PhD, FAASLD

National Chair Professor Graduate Institute of Clinical Medicine, Hepatitis Research Center, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital

Outline

- Unmet needs of current HBV treatments
- New therapeutic perspectives
 - New strategies
 - New agents
- Perspectives

Current treatment strategies for CHB

Treatment*	Strategy	Goal	Duration	Efficacy
Standard or pegylated Interferon alfa	Sustained off- therapy response (immune control)	Low HBV DNA (<2000 IU/ml) and normal ALT level	Finite	Sustained response in ~30% of patients with 48 weeks of therapy, and may increase to 50% in those with good baseline and on-treatment factors
Nucleos(t)ide analogues (lamivudine, adefovir, telbivudine, entecavir or tenofovir)	Maintained on- treatment response (viral control)	Undetectable HBV DNA and normal ALT level	Prolonged or indefinite	Profound suppression of HBV DNA with continued treatment without drug resistance

*Pegylated interferon, entecavir and tenofovir are the preferred agents.

Kao JH. Liver Int 2014.

Achieved goals of CHB therapy

Su and Kao. ERGH 2014.

Kao 2016

Unmet needs of CHB monotherapy

Rate of HBsAg loss is low with no loss of cccDNA with NAs1

 NAs inhibit viral (–) strand and (+) strand synthesis within nucleocapsids without directly affecting cccDNA

Lifelong therapy is often needed with NAs1

- Especially in HBeAg-negative patients (When to stop?)

PEG-IFN inhibits transcription of viral genes (repressing cccDNA), shows immunomodulatory activity and may induce some reduction of cccDNA1

 But has adverse effects and is successful in only a limited number of patients (Who will respond?)

Time for a new goal: 'cure' of CHB patients

What does HBV cure mean?

Parameter	Absolute cure (e- radication)	Clinical or Func- tional cure
Viral load	Undetectable	Undetectable
HBsAg	Undetectable	Undetectable
Anti-HBs	Present	Variable
cccDNA	Undetectable	Undetectable or repressed
Risk of HCC development	Maybe negligible	Maybe still exist
Risk of HBV reactivation	Maybe negligible	Maybe still exist
Risk of death from liver di- seases	Same as person who was never infected	Same as person with natu- rally resolved infection
Treatment cessation	Off-drug possible	Off-drug possible

Outline

- Unmet needs of current HBV treatments
- New therapeutic perspectives
 - New strategies
 - New agents
- Perspectives

New strategies to achieve CHB cure

HBV burden cccDNA inhibition Virion production New hepatocyte infection

HBV-specif c immunity

Adaptive immunity Innate immunity Antigen reduction

Immunomodulation of T cell response to HBV therapy during NA-based therapy

Potentials of NAs and PEG-IFN combination therapy

Additive or synergistic activity against HBV No added toxicity Induce cccDNA loss or control and higher rates of HBsAg loss (HBsAg seroconversion)

Evidence of synergistic activity with PEG-IFN + ETV in HBV-infected humanised mice

HBV DNA level at Week 4

HBsAg level at Week 4

Which combination strategy is the best to enhance HBsAg loss?

Simultaneous combination of TDF+PEG-IFN

Randomized, controlled, open-label study (N=740) Stratified by HBeAg status and HBV genotype Primary endpoint: HBsAg loss at Week 72 by Kaplan-Meier estimate Inclusion criteria HBeAg+ and HBV DNA ≥ 20,000 IU/mL; HBeAg- and HBV DNA ≥ 2,000 IU/mL ALT > 54 and ≤ 400 U/L (men); ALT > 36 and ≤ 300 U/L (women) No bridging fibrosis or cirrhosis on liver biopsy or by transient elastography

lapted from Marcellin P, et al. Gastroenterol 2015; 10.1053/j.gastro.2015.09.043

HBsAg decline with TDF+PEG-IFN is significantly greater than with monotherapy

Mean change from baseline in HBsAg

Error bars represent 95% confidence intervals

Combination therapy results in higher rates of HBsAg loss than monotherapy

- 7 patients had HBsAg seroreversion on or after Week 48 (4 [TDF + PEG 48 wk], 3 [TDF + PEG 16 wk → TDF 32 wk])
 - 5/7 had ≤1 week of therapy after HBsAg loss

Which combination strategy is the best to enhance HBsAg loss?

Adding on PEG-IFN increases HBsAg loss/ seroconversion vs. continuous NAs: PEGAN study

Which combination strategy is the best to enhance HBsAg loss?

Switching from ETV to PEG-IFN results in significantly higher rates of HBsAg loss vs. monotherapy: OSST study

Outcome, % (n/N)	PEG-IFN	ETV	P-value
HBeAg seroconversion	14.9 (14/94)	6.1 (6/98)	0.0467
HBeAg loss	38.1 (16/42)	33.3 (16/48)	0.6378
HBV DNA <1000 copies/mL*	72.0 (59/82)	97.8 (90/92)	<0.0001
HBsAg loss	8.5 (8/94)	0/98	0.0028
HBsAg seroconversion	4.3 (4/94)	0/98	0.0556
ALT normalisation (<1 x ULN)*	58.5 (48/82)	91.3 (84/92)	<0.0001
HBsAg <10 IU/mL*	15.9 (13/82)	0/92	<0.0001
HBsAg <100 IU/mL*	26.8 (22/82)	4.4 (4/92)	<0.0001
HBsAg <1000 IU/mL*	52.4 (43/82)	30.4 (28/92)	0.0032

Highly selective patients in respect to HBeAg quantification (< 100 PEIU/mL) – useful for day-to-day practice?

*18 patients with missing data were excluded; baseline HBsAg <1500 IU/mL PPV; Ning Q, et al. J Hepatol 2014;61:777–84. PPV: positive predictive value; ULN: upper limit of normal

Outline

- Unmet needs of current HBV treatments
- New therapeutic perspectives
 - New strategies
 - New agents
- Perspectives

Barriers to achieve HBV cure

Barriers:

- Reservoir of cccDNA
- Dysfunctional T-cell response
- Insufficient or inadequate B-cell response

New agents to overcome the barriers:

- Deplete or silence cccDNA
- Improve potency of Pol inhibitors
- Broaden viral targets
- Activate antiviral immunity

HBV life cycle and new agents for possible HBV cure

Lin and Kao et al. Liver Int 2016

DAAs: Entry inhibitors

Drug name	Mechanism	Compound	Stage of De- velopment
Myrcludex-B	Competitive inhibi- tion of viral entry via NTCP	HBV preS1-derived lipopeptide	Phase II
Cyclosporin A	Competitive inhibi- tion of viral entry via NTCP	Cyclic nonribosomal peptide	FDA appro- ved, but not tested for HBV
Ezetimibe	Competitive inhibi- tion of viral entry via NTCP	Ezetimibe	FDA appro- ved, but not tested for HBV

Hepatitis B Foundation Drug Watch: Updated April 27, 2015; Zeisel MB et al. Gut 2015. Lin and Kao et al. Liver Int 2016

Entry inhibitor: Myrcludex-B

Synthetic lipopeptide derived from pre-S1 domain of HBV envelope protein

Specifically targets NTCP, the functional receptor for HBV

>

>

The entry inhibitor, Myrcludex B, blocks HBV infection in PHH-transplanted mice

Myrcludex B is a chemically synthesised lipopeptide derived from the preS1 domain of HBV It blocks de novo HBV and HDV infection in vitro and in vivo1

1. Adapted from Petersen J, et al. Nat Biotech 2008;26:335–41 2. Urban S, et al. AASLD 2014; Poster #LB-20

Entry inhibitor: Myrcludex-B

> Phase IIa clinical trial

Safety, tolerability and efficacy of multiple doses of Myrcludex B (0.5mg, 1mg, 2mg, 5mg and 10mg Myrcludex-B SC QD) in comparison with the control group receiving standard therapy with NAs is recently completed

- Results:
 - > Very well tolerated; injection site dermatitis in 3/40 patients
 - HBV DNA decline > 1 log10 at Wk 12: 6/8 (75%) patients receiving 10 mg Myrcludex-B
 - ALT normalization: 22/40 (55%) patients
 - > HBsAg levels: no significant changes

DAAs: Inhibitors of cccDNA

Drug name	Mechanism	Compound	Stage of De- velopment
BSBI-25	cccDNA inhibitor	N/A	Preclinical
CCC-0975	Inhibition of rcDNA-cccDNA conversion	Disubstituted sulfonamide (DSS)	Preclinical
Zinc-finger nu- cleases	cccDNA-targeted endonuclease	Zinc-finger nucleases	Preclinical
TALENs	cccDNA-targeted endonuclease	Transcription activator-like effector nucleases	Preclinical
CRISPR/Cas9	cccDNA-targeted endonuclease	CRISPR/Cas9 system	Preclinical

DAAs: RNA interference

Drug name	Target	Compound	Stage of De- velopment
ARC-520	HBV mRNA	siRNA	Phase II / III
TKM-HBV	HBV mRNA	siRNA	Phase I
ISIS-HBVRx	HBV mRNA	Anti-sense RNA	Phase I
dd-RNAi compound	HBV mRNA (Pol)	shRNA	Preclinical
ALN-HBV	HBV mRNA	siRNA - LNP	Preclinical

Hepatitis B Foundation Drug Watch: Updated April 27, 2015; Zeisel MB et al. Gut 2015. Lin and Kao et al. Liver Int 2016

ARC-520 is comprised of two siRNA sequences targeted against two regions of the HBV genome and is actively targeted to the liver

>

- Pre-clinical results: HBV-infected chimpanzee
 - Decreased HBV DNA, HBeAg and HBsAg

- Phase IIa clinical trial (Heparc-2004)
 - A multicenter, randomized, double-blind, placebocontrolled, multi-dose study of ARC-520 (1-4 mg/kg) administered intravenously to patients with chronic immune active HBV infection maintained on entecavir or tenofovir therapy

- Phase II clinical trial
 - > 58 patients (48 ARC, 10 placebo, mean age: 41)

38 pts: HBeAg (-) 20 pts: HBeAg (+)

ETV was applied before/during ARC delivery (iv)

In Tx-naïve patients

1.9 Log reduction in HBeAg(+) 0.7 Log reduction in HBeAg (-)

In ETV-treated patients

0.7 Log reduction in HBeAg (+) Yuen M, et al. AASL 0.251 B: Ogtorecturction in HBeAg (-)

DAAs: Inhibitors of nucleocapsid assembly

Drug name	Target	Compound	Stage of Deve- lopment
GLS4	Interfere with cap- sid formation/ stabi- lity	Heteroaryldihydropyrimidine (HAPs)	Phase II
Bay 41-4109	Viral nucleocapsid inhibitor	HAPs	Phase I
AT-130	Inhibition of HBV capsid assembly	Phenylpropenamide derivatives	Preclinical and early clinical phase
NVR-3-778 (NVR1221)	Inhibition of HBV capsid assembly	Small molecule	Phase Ib

Oral HBV core inhibitor NVR 3-778 is effective against HBV with synergistic activity when combined with NAs

	EC50 (μM) against HBV1	NVR 3-778 combined with1	Synergy (μM) %
NVR 3-778	0.47	LAM	5.1 ADDITIVE
LAM	0.11	TDF	18.5 ADDITIVE
TDF	1.4	ETV	1.0 ADDITIVE
ETV	0.003		

Pharmacokinetics in Phase 1a study2

Phase 1b efficacy and safety of NVR 3-778, a first-in-class HBV core inhibitor, in HBeAg-positive CHB patients

- NVR 3-778: orally HBV core inhibitor, inhibits HBV nucleocapid assembly and potentially other core-mediated function in the HBV life cycle
- Primary objectives: To assess dose-related safety starting fro 100mg~1200mg/day in HBeAg positive patients
 - 44 patients (41 male and 3 female), 26 Chinese
 - Further ongoing study: Peg-IFN + NVR 3-778 vs. Peg-IFN

NVR 3-778 Antiviral Efficacy Increases with Dose in Cohorts F-I

Mean 1.72 log10 (98.1%) HBV DNA reduction for cohort I

- Cohort I patient range: 1.06-3.71 log10 IU/mL (91.3-99.9%)
- Tripling of daily dose from 400mg QD (cohort H) to 600mg BD (cohort I) produced large efficacy increase

Mean 0.86 log10 (86%) serum HBV RNA reduction for cohort I

- Cohort I patient range: 0.16 1.5 log10 copies/mL
- Mean 0.001 log10 change for placebo patients across dose groups (n=8)

Higher dose currently under study, to explore maximal efficacy of NVR 3-778

DAAs: Polymerase inhibitors

Drug name	Target	Compound	State of Deve- lopment
Tenofovir alafena- mide (TAF)	HBV polymerase	Prodrug of Tenofovir	Phase III
CMX157	HBV polymerase	Prodrug of Tenofovir	Phase II
AGX-1009	HBV polymerase	Prodrug of Tenofovir	Phase I, China
Besifovir	HBV polymerase	Acyclic nucleotide phos- phonate	Phase III, Ko- rea

Tenofovir alafenamide (TAF)

CES1 = Carboxylesterase 1

Besifovir

Phase IIb multicentred randomised trial of besifovir (LB80380) versus entecavir in Asian CHB patients

HTAs: Immune modulation

Drug name	Targets	Compounds	Stage of Deve- lopment
ABX-203	Therapeutic vaccine	Recombinant antigen containing HBsAg and HBcAg	Phase IIb / III
GS-4774	Therapeutic vaccine	Recombinant antigen containing X, Env, Core epitopes	Phase II
GS-9620	TLR7 agonist	Oral TLR7 agonist	Phase II
CYT107	Immune-modulator	Recombinant human IL-7	Phase I / Ila
TG-1050	Immunotherapeutic	Non-replicative adenovi- rus serotype 5 encoding a large fusion protein (trun- cated Core, modified Pol and two Env domains)	Phase I

Therapeutic vaccine: GS-4774

- Recombinant antigen containing X, Large S (env) and Core epitopes
- **>** GS-4774 activates dendritic cells after phagocytosis
- Recombinant antigen epitopes are displayed via MHC class I and II and stimulate CD4+ and CD8+ T cells

Safety and efficacy of GS-4774 in patients with chronic hepatitis B on oral antiviral therapy—Phase II

Phase II randomized, open-abel study (GS-US-330-0101; NCT02174276) All patients on OAV with undetectable HBV DNA for at least 1 years prior to screening GS-4774 administered sc every 4 weeks x 6 doses

Stud Wk	ly Design	0 24 48
n=27	OAV	
n=51	OAV + GS-4774 2 YU	OAV
n=50	OAV + GS-4774 10 YU	OAV
n=50	OAV + GS-4774 40 YU	OAV
OAV, oral antiv	iral.	SC Injection

Week 48 HBsAg Change From Baseline in 40-YU vs Control Groups Stratified by HBeAg Status and HBsAg Level

HBV Serology at Week 48

	OAV	OAV + GS-4774 2 YU	OAV + GS-4774 10 YU	OAV + GS-4774 40 YU
HBeAg loss, n/n (%)	0/7	1/13 (8)	4/12 (33)	0/12
HBeAg seroconversion, n/n (%)	0/7	1/13 (8)	3/12 (25)	0/12
HBsAg loss, n	0	0	0	0

- No clinical signif cant decline in HBsAg was observed during and after treatment with GS-4774, no HBsAg loss.
- HBeAg loss was only achieved with GS-4774 treatment.

Toll-like receptor (TLR) 7 agonist GS-9620 acts by modulating the immune system

TLR-7: toll-like receptor 7; pDC: plasmacytoid dendritic cell; QOD: every other day; sAg: serum antigen

Adapted from Menne S, et al. EASL 2011; Poster #170 Lanford RE, et al. Gastroenterology 2013;144:1508–17 Niu C, et al. AASLD 2014; Poster #1879

TLR7 agonist: GS-9620

> Phase II clinical trial: in progress

- > CHB patients without cirrhosis on oral antiviral treatment for >1 year
- **50** patients per cohort, stratified by HBeAg status and HBsAg level
 - Placebo (n=5); 1 / 2 / 4 mg GS-9620 PO QOW (n=15, respectively)

Role of immunotherapy in HBV cure

Nature Reviews | Gastroenterology & Hepatology

Yang, H.-C. & Kao, J.-H. (2015) HBV cure—can we pin our hopes on immunotherapy? *Nat. Rev. Gastroenterol. Hepatol.* doi:10.1038/nrgastro.2015.8

Immunotherapy and HBV cure

Reverse T cell exhaustion by PD-1/PD-L1 pathway blockade

In vivo PD-L1 blockade synergizes with therapeutic vaccination to enhance WHcAg-specific T cell immunity

Degranulation

In vivo PD-L1 blockade synergizes with therapeutic vaccination to control WHV replication

Liu et al. PLoS Pathog 2014;10:e1003856.

Outline

- Unmet needs of current HBV treatments
- New therapeutic perspectives
 - New strategies
 - New agents
- Perspectives

How may an HBV curative regimen look in the future—a combination approach?

Take Home Message

- The new goal of HBV therapy is to achieve "functional cure" or even "absolute cure"
 - HBsAg loss/seroconversion with clearance of cccDNA
- New agents (DAA and HTA) for CHB are starting to emerge
 - HBV entry inhibitors, small interfering RNA, capsid inhibitors promising but early in development
 - Direct cccDNA inhibition may be needed but is difficult to reach
 - Immune modification: TLR agonist, therapeutic vaccination, PD1-PDL1 blocking in development
- Combination therapy is best likely needed!

We have a dream....

Table 3. Milestones and future prospects in global control of HBV infection*

Year	Milestone and perspective
1960s	Discovery of Australia antigen
1970s	Serological assays for HBV markers
1980s	Hepatitis B vaccine available Interferon approved for treatment of chronic hepatitis B Quantitative assay for HBV DNA
1990s	PCR assay for detection of HBV DNA Lamivudine approved for treatment of chronic hepatitis B
2000s	Novel antiviral agents (pegylated interferon, nucleoside analogues or therapeutic vaccine)
2010s	Combination therapy for chronic hepatitis B
2020s	Cure for chronic hepatitis B
2050s	Global control of hepatitis B virus infection

Taiwan Formosa, Beautiful Island

Thank You for Your Attention

