

11 & 12 January 2016 PARIS - Palais des Congrès

International Conference on the Management of Patients with Viral Hepatitis

Organised by Pr Patrick Marcellin

Organising Committee Emilie Estrabaud, Michelle Martinot-Peignoux, Monelle Muntlak Hôpital Beaujon, APHP - INSERM CRI - Université Paris-Diderot

Scientific Committee Marc Bourlière, Massimo Colombo, Rafael Esteban, Graham Foster, Michael Fried, Michael Manns

www.aphc.info

HCV eradication with direct acting antivirals (DAAs)?

Why is viral cure possible in HCV?

Emilie Estrabaud

Service d'Hépatologie et INSERM UMR1149, AP-HP Hôpital Beaujon, Paris, France. <u>emilie.estrabaud@inserm.fr</u>

Plan

- 1. Virological cure: virus characteristics allowing eradication
- 2. Interaction with immune system and risks of reinfection

3. Functionnal cure: improvements after viral cure

HCV life cycle

Nature Reviews | Microbiology

Moradpour et al. 2007 Nature Reviews Microbiology 5, 453–463.

HBV life cycle

ER: endoplasmic reticulum

HBV persistence:

1-Cytoplasmic and nuclear replicative forms

2- HBV cccDNA

3- Empty particules to stimulate the immune system

Viral polymerase:

1 step

Fletcher SP, Delaney WE. Semin Liver Dis 2013;33:130–7.

HIV-1 life cycle

Free HIV

HIV persitence:

1-Cytoplasm and nucleus replication

2- proviral insertion

3- Multiple cell targets

Viral polymerase: 1 step

Engelman et al. 2012. Nature Reviews Microbiology **10**, 279-290 Deeks et al 2012. *Nature Reviews Immunology* **12**, 607-614.

HCV, HBV and HIV: different dynamics of selection of mutations

	HCV	HBV	HIV
Daily production of virion per day	1012	1012-1013	1010
Half life free virions (hours)	2-3	3-24	1
Mutation rate	Very high	high	Very high
Constraints due to ORFs	none	high	moderate

HCV: only 1 ORF

No ORFs constraints for the selection of mutations

Bartenschalger et al. 2013, Nature Reviews Microbiology 11, 482–496.

Viral Genome: multiple ORF and splicing constraint the selection of mutations

HIV: fewer overlapping ORFs

Plan

- 1. Virological cure: virus characteristics allowing eradication
- 2. Interaction with immune system and risks of reinfection

3. Functionnal cure: improvements after viral cure

HCV strategies to escape immune response

HCV	HBV	HIV
Association of virions with lipoproteins	Production of empty particles	Reduction of antigen presentation by MCH I (Nef)
Inhibition of IFNs induction (NS3/4A, NS5A)	Inhibition of IFNs induction (HBV polymerase, HBx)	Reduction of antiviral factors APOBEC (Vif)
Inhibition of IFNs signalling (NS5A/Core)	Inhibition of IFNs signaling :RIG-I /MDA5/TLRs (HBx)	Reduction of CD4 and Tetherin (Vpu): increased viral production

HCV: limited memory immune response and the risk of re-infection

CD4 an CD8 T cell detected (up to 20 years), in patients with spontaneous viral clearence.

Treatment-induced viral clearance

Cellular protection after HCV spontaneous clearance.

Reduction of anti-HCV antibodies after HCV recovery

No humoral immunity after HCV spontaneous clearance.

HCV: populations at risks of re-infection

Hill et al. CROI 2015; February 23-26, 2015. Seattle, Washington. Abstract 654.

Plan

- 1. Virological cure: virus characteristics allowing eradication
- 2. Interaction with immune system and risks of reinfection

3. Functionnal cure: improvements after viral cure

Increased survival in patients with SVR

Meta-analysis (n=33,360 patients)

After SVR, patients cirrhotic patients have still higher risk of mortality than the total population.

HCV eradication greatly improves mortality risk in HIV/HCV co-infected patients.

Simmons et al. Clin Infect Dis 2015; 61: 730-40.

HCC risk remains, after viral eradication in cirrhotic patients

HCC risk increases over the time even after SVR, in patients with LC.

Slow fibrosis regression after SVR

Reduction of F3-F4 after SVR

Improvement of liver fibrosis after the EOT

The shade area indicates the number of patients with fibrosis stage that remained stable or improved.

EOT 0,5y 1y 3 to 5y >6y

Maylin et al. Gastroenterology. 2008 Sep;135(3):821-9.

DAAs improve quality of life during the treatment

ION 1, 2 and 3 studies

Improvements at SVR12 LDV/SOF

Improvements even during the course of DAAs treatment.

Conclusions

- HCV has no cellular reservoir.
- HCV develops several mechanisms to counteract the immune response.
- In treatment induced HCV clearance there is no protection against reinfection.
- Drugs users and HCV/HIV co-infected had higher risks for reinfection.
- SVR is associated with reduction of mortality risks and HCC.
- Risk of HCC remains important in cirrhotic patients after SVR.
- Studies on benefits after SVR induced by DAAs combinations, will be needed.