HCV: How to provide the best treatment with what I have

David R Nelson MD

Assistant Vice President for Research

Professor of Medicine

Director, Clinical and Translational Science Institute

University of Florida

Gainesville, USA

Disclosures

David R Nelson, MD,

- Research support from AbbVie, Bristol-Myers Squibb, Genentech/Roche, Gilead Sciences, Merck, Janssen, and Vertex
- Additional research support: NIH, DOD, DOH grants

Key Points

- Six all-oral regimens are approved for chronic HCV treatment; two more coming in 2016
- Limited access and availability of some oral agents create the need to build the best treatment regimen from available drugs
- Treatment choice is often based on access, efficacy, safety, and cost balance
- Easy to treat populations allow more options for tailored therapy, while hard to treat populations (eg; Gen 3, decompensated, renal failure) require more select treatment regimens

Multiple Validated Drug Targets in 2016

Option #1: Have The Best Treatment

Key Attributes of "Best Treatment"

- Extremely high efficacy (>95%)
- Minimal toxicity
- Minimal drug-drug interactions
- Once daily dosing and no ribavirin
- Pangenotypic
- Short duration
- Low cost

Is this type of drug on the horizon?

ASTRAL-1 and 3: SVR12 With Sofosbuvir/ Velpatasvir for 12 Weeks in GT1, 2, 3, 4, 5, 6 HCV

- Highly effective across all genotypes and stages of liver disease
- AE profile similar to placebo

Feld JJ, et al. N Engl J Med. 2015; Foster GR, et al. N Engl J Med. 2015

How to Provide the Best Treatment With^{tue} With^{tue} What I Have?

Option #2: Build the best possible treatment regimen from available drugs

- Preferred treatment choices with multiple options are provided by most guidelines
- However, restrictions of access to drugs on formulary and of which patients can be treated alter the traditional physician-patient decision process
 - Ex: Market simulation survey* of 45 US academic centers in Aug 2015 showed that only 10% of physicians/patients had parity in drug choice selection
 - 90% of patients had a single "preferred" drug based on pricing agreements between commercial payors/Medicaid and Pharma

*HCV-TARGET survey

Balance of Efficacy, Safety, and Cost

Second Generation DAAs offer high level of safety and efficacy

Regimen	Туре	SVR (%)	SAE (%)	DDR (%)	Cost/wk (\$)	Cost/SVR (\$)
P + R	Naïve	49.4 (42.7-56.2)	10.1 (7.2-14.0)	9 (5.3-14.9)	900	87449
P + R	NR	18.5 (15.2-22.4)	7.9 (5.5-11.3)	3.5 (2.1-5.7)	900	233514
TEL or BOC based with P/R	Naïve	74.5 (67.8-80.2)	9.4 (6.7-13.0)	11.9 (6.5-20.7)	2300	148188
TEL or BOC based with P/R	NR	62.6 (55.9-68.7)	13.7 (11.3-16.5)	12.5 (9.8-15.8)	2300	176358
SOF or SIM based with P/R	Naïve	90.3 (83.6-94.4)	5.4 (1.9-12.5)	2.5 (1.1-5.4)	6900	91694
SOF or SIM based with P/R	NR	95.9 (91.5-98.1)	6.8 (1.1-12.8)	1.9 (0.5-7.1)	6900	86340
DAA + R	Naïve	92.3 (82.9-96.7)	3.1 (1.3-6.8)	0.9 (0.3-2.6)	12200	158613
DAA +R	NR	95.9 (91.5-98.1)	3.3 (1.1-9.9)	1.9 (0.5-7.1)	12200	152659
2 DAA, No P/R	Naïve	96.4 (93.6-98.0)	1.9 (0.6-5.7)	0.9 (0.3-2.7)	12000	149378
2 DAA, No P/R	NR	94.1 (88.9-97.0)	2.3 (0.6-8.8)	1.4 (0.3-6.5)	12000	153029

Bansal A et al. World J Hepatol 2015;7:806-813 23 RCT including 9,354 pts

DDR: drug d/c rate

Case 1: Easy To Treat Population

34 year old Asian female, with baseline HCV RNA of 850,000 IU/ml and genotype 1b, mild fibrosis and the IL28B CC genotype.

AASLD and IDSA: Recommended HCV Regimens for This Patient Duration of Therapy (weeks)

	Genotype 1a		Genotype 1b	
	No Cirrhosis	With Cirrhosis*	No Cirrhosis	With Cirrhosis*
Ledipasvir/sofosbuvir (90/400 mg qd)	12^	12	12^	12
Sofosbuvir (400 mg qd) + simeprevir (150 mg qd) <u>+</u> RBV†‡	12 (no RBV)	24 (without Q80K)	12 (no RBV)	24
Ombitasvir/paritaprevir/r (25/150/100 mg qd) + dasabuvir (250 mg bid) <u>+</u> RBV	12 (with RBV)	24‡ (with RBV)	12 (no RBV)	12 (no RBV)
Daclatasvir (60 mg qd)§ + sofosbuvir (400 mg qd) <u>+</u> RBV	12 (no RBV)	24	12 (no RBV)	24

Weight-based RBV (1000 mg [<75 kg] to 1200 mg [≥75 kg]).; *Compensated cirrhosis.; †Role of RBV is unclear, awaiting results from larger phase 3 studies for clarification.; ‡12 weeks may be considered for some patients based on prior treatment history. §Dose may need to increase or decrease when used concomitantly with cytochrome P450 3A/4 inducers and inhibitors, respectively.; ^ FDA label: consider 8 weeks of therapy if HCV RNA < 6M IU/mI

AASLD and IDSA. http://www.hcvguidelines.org/full-report-view. Version December 11, 2015.

Easy to Treat Genotype 1 Patient Multiple Pathways to High SVR

Regimen	SVR %	
Tier 1		
Sofosbuvir + Ledipasvir x 8-12 wks	> 95%	
Paritaprevir /ritonavir + Ombitasvir + Dasabuvir x 12 wks	> 95%	
Sofosbuvir + Daclatasvir x 12 weeks	> 95%	
Sofosbuvir + Simeprevir x 12 weeks	> 95%	
Elbasvir/Grazoprevir x 12 weeks	> 95%	
Tier 2		
PEG/RBV + Sofosbuvir x 12 weeks	> 95%	
Asunaprevir + Daclatasvir x 24 weeks	> 85%	
Tier 3		
PEG/RBV + Simeprevir x 24 weeks	> 90%	
Sofosbuvir + Telaprevir x 12 weeks	> 90%	
PEG/RBV x 24-48 weeks	> 85%	

Case 2: Hard To Treat Population

68 year old male, genotype 3, cirrhosis and failed prior therapy with PEG-IFN + ribavirin.

AASLD/IDSA recommendations for Gen 3, cirrhosis, TE Patients

Sofosbuvir (400 mg qd) + PR for 12 weeks Daclatasvir (60 mg qd) + sofosbuvir (400 mg qd) <u>+</u> RBV for 24 weeks

BOSON: SVR12 in GT3 by Tx History and Cirrhosis Status

Foster GR, et al. EASL 2015. Abstract LO5.

ALLY-3+: Longer Duration and RBV Improve Response in G3 Cirrhosis

No virologic failures or AE-related discontinuations

Leroy V, et al. AASLD 2015. Abstract LB-3. .

Interim Analysis: Daclatasvir + Sofosbuvir ± RBV in GT3 HCV in French CUP

- Pts treated with DCV 60 mg + SOF 400 mg QD for 24 wks; RBV added or duration shortened to 12 wks per physician discretion
- Most common AEs: asthenia, sleep disorder, headache
 - Tx-related serious AEs (n = 1 each): hepatic decompensation, allergic dermatitis

Hezode C, et al. AASLD 2015. Abstract 206..

ASTRAL-3 Open-Label Trial: SVR12, Safety With Sofosbuvir/Velpatasvir in GT3 HCV

- SVR12 rate numerically lower with vs without BL NS5A RAVs (88% vs 97%)
- Safety profile similar to ASTRAL-1

Case 3: Special HCV Populations With Very Limited Treatment Options

- AASLD/IDSA Recommendations for **Decompensated Cirrhosis**
 - Gen 1/4
 - Sofosbuvir + Daclatasvir + RBV x 12 wks
 - Sofosbuvir + Daclatasvir x 24 wks (RBV intolerant)
 - Sofosbuvir + Ledipasvir + RBV x 12 wks
 - Gen 2/3
 - Sofosbuvir + Daclatasvir + RBV x 12 wks
 - Sofosbuvir + RBV x 48 wks
 - NOT recommended
 - Interferon
 - Telaprevir, Boceprevir, or Simeprevir based regimen
 - Pariteprevir-, ombitasvir-, or dasabuvir-based regimens

SOF + NS5A Inhibitors ± RBV in Pts With Decompensated Cirrhosis: Efficacy

SVR12 among pts with other HCV GTs: 89% (n = 27) with SOF + LDV + RBV; 85% (n = 13) with SOF + DCV + RBV; 100% (n = 3) SOF + DCV

Foster GR, et al. EASL 2015. Abstract O002.

ASTRAL-4: Sofosbuvir/Velpatasvir in Decompensated Cirrhosis

- Open-label trial; HCC and liver transplantation excluded
- In pts with BL MELD > 15, SVR12, score improved in 84%, worsened in 8%; in pts with BL MELD < 15, SVR12, score improved in 52%, worsened in 27%
- AEs consistent with advanced liver disease and RBV toxicity

Charlton MR, et al. AASLD 2015. Abstract LB-13. Curry MP, et al. N Engl J Med. 2015; [Epub ahead of print].

Case 4: Special HCV Populations With Very Limited Treatment Options

- AASLD/IDSA Recommendations for Renal Impairment (CrCl < 30 ml/min)
 - Gen 1/4
 - Ombitasvir/Paritaprevir/r <u>+</u> Dasabuvir <u>+</u> RBV
 - (coming: Grazoprevir + Elbasvir)
 - Gen 2/3/5/6
 - PEG-IFN + low-dose RBV x 12 wks
 - Sofosbuvir + RBV x 48 wks

HCV Treatment in Genotype 1 and Chronic Kidney Disease

C-SURFER: Grazoprevir + Elbasvir **RUBY-1:** Ombitasvir/Paritaprevir/r + Dasabuvir <u>+</u> RBV *

MFAS = primary efficacy analysis;

* Genotype 1a with RBV (200 mg qd), genotype 1b: no RBV

Roth D, et al EASL 2015; Pockros PJ, et al. Hepatology. 2015;62(suppl S1):716A-717A. Abstract 1039

What is the risk of using a **Step-up** approach (cheaper and less effective regimen) vs **Topdown** (best biologic agents)

- Treatment failure
 - Resistant associated variants increased
 - Harder to retreat and may restrict future options
 - Many times you only get one shot at treating a patient
 - Lost to follow-up
 - Payors restrict retreatment in US
- Solution
 - Use most effective regimen available to minimize failure
 - Payors/Pharma: Pay for cure, not treatment regimen

Summary

- Eight all-oral regimens will be approved for chronic HCV treatment by end of 2016
- Limited access and availability of some oral agents create the need to build the best treatment regimen from available drugs
- Treatment choice is often based on access, efficacy, safety, and cost balance
- Easy to treat populations allow more options for tailored therapy, while hard to treat populations (eg; Gen 3, decompenated, renal failure) require more select treatment regimens