Mr N... 55 yrs

- Referred for hyperferritinemia
- Type 2 diabetes
- Alcohol intake 50 g/day
- Weight 90 Kg; height 170 cm
- Physical examination: no signs of liver disease

Lab tests

- AST: 250 (ULN 40 IU/L)
- ALT: 200 (ULN 50 IU/L)
- Gamma GT: 450 (ULN 50 IU/L)
- Alkaline phosphatase: 100 (ULN 130 IU/L)
- Total Bilirubin: 15 (<17 µmol/L)
- Prothrombin Time: 75%
- Ferritin 1139 µg/ L; Transferrin saturation: 30%
- Platelet count: 140 000 /mm3

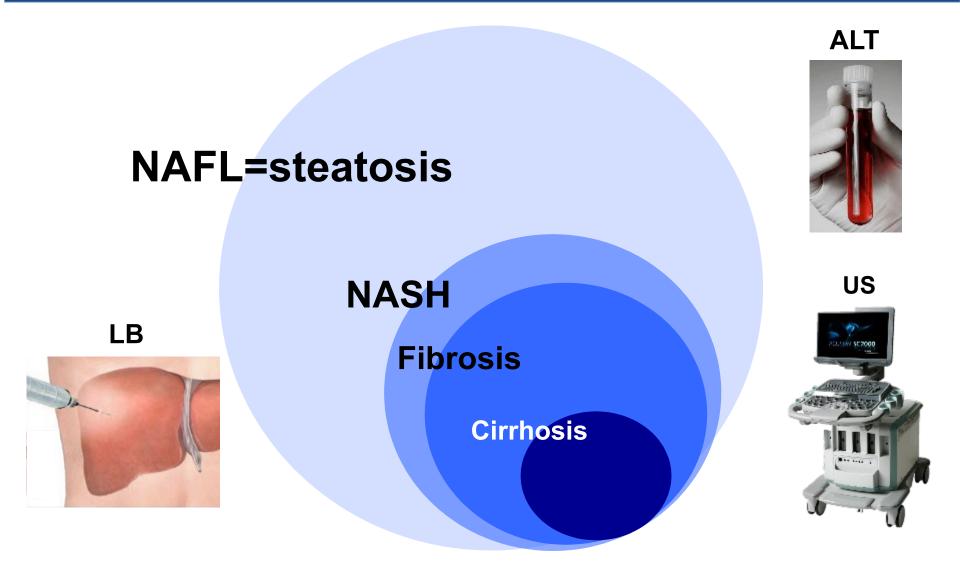
- Ultrasound: bright liver
- CAP: 310 dB/m
- Liver stiffness: 26 kPa (IQR 4.5)

Do you need further exams for the diagnosis?

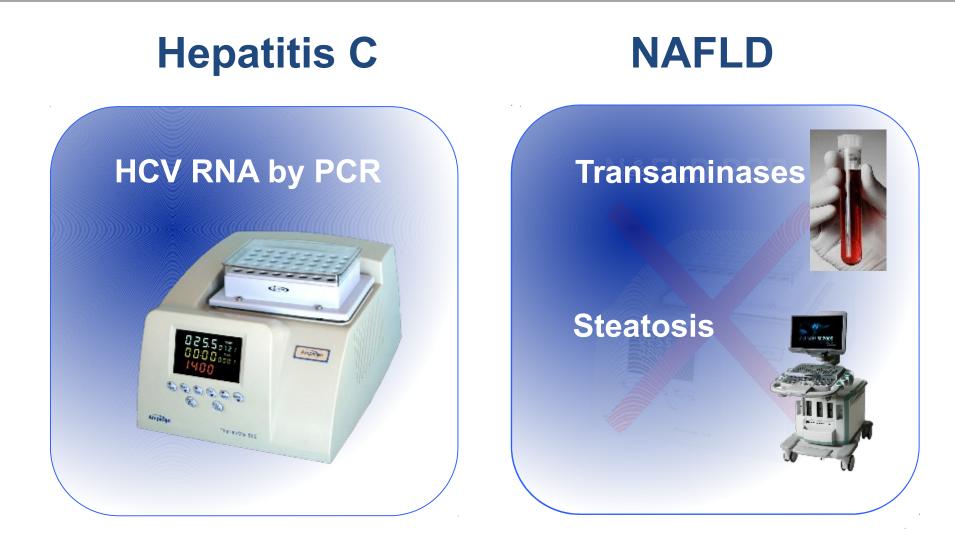
1. Serum markers

- 2. Liver biopsy
- 3. None or other

NAFLD: wide spectrum & lack of standardized definition


NAFL=steatosis

NASH


Fibrosis

Cirrhosis

NAFLD: variable definition according to diagnostic tools

NAFLD: diagnostic strategy

NAFLD: diagnostic strategy

Ultrasound

Advantages

Simplicity

Availability

Inocuity

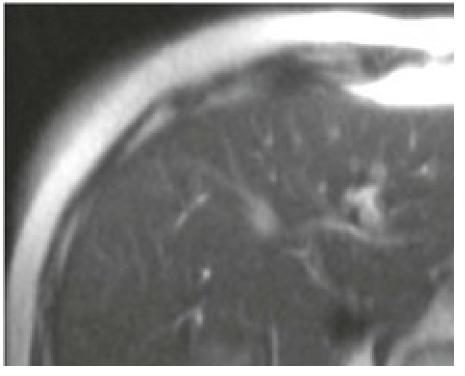
Low cost

Good specificity

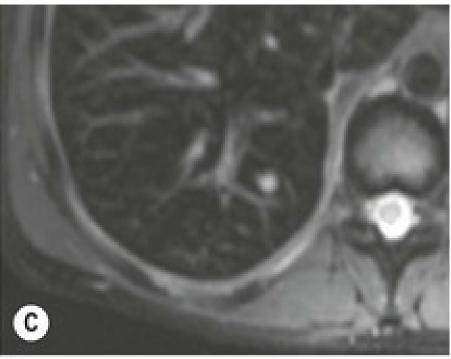
Disadvantages

Low sensitivity

Sensitivity in obese

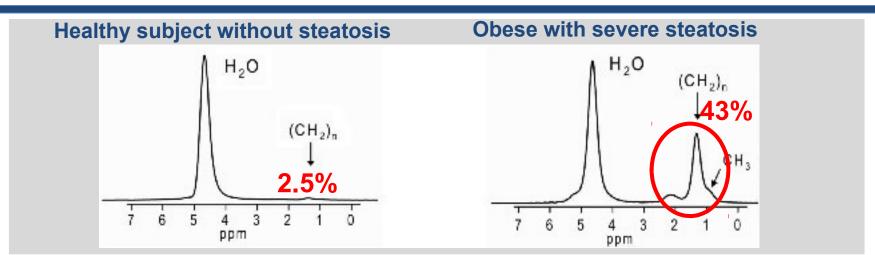

Operator-dependent ++

No quantification

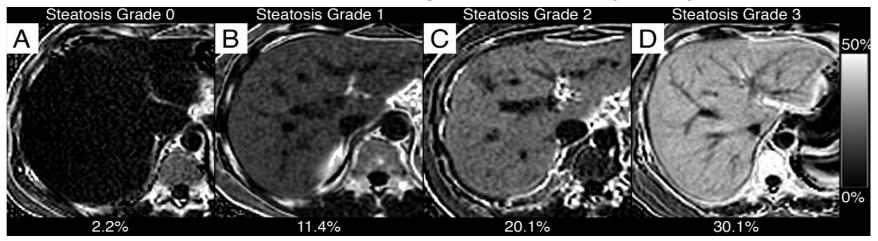

Schwenzer et al. J Hepatol 2009;51:433-45

MRI Iron quantification

Normal liver



Increased hepatic iron



Gandon P, et al. Lancet 2004

MRI Spectroscopy (1H MRS) / PDFF

Proton Density Fat Fraction (PDFF)

Dulai P, Sirlin C, Loomba R. J Hepatol 2016;65:1006-16

MRI Spectroscopy (1H MRS) / PDFF

Advantages

Highly sensitive

Highy specific

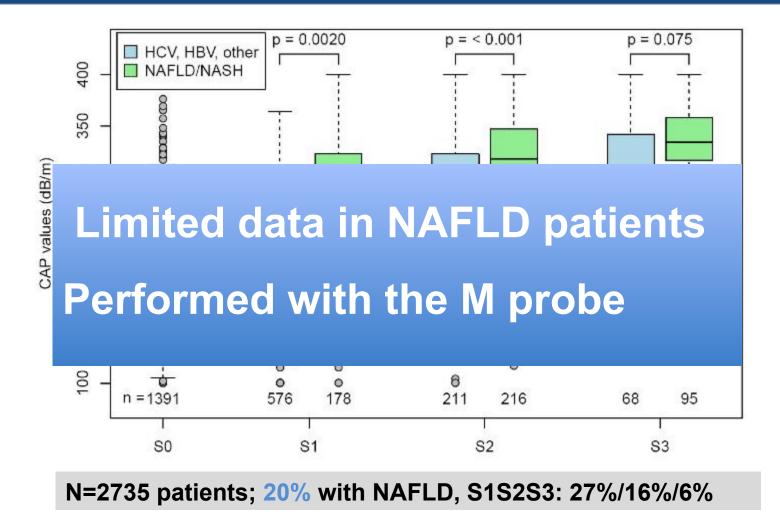
Precise quantification Inocuity **Disadvantages**

Operator expertise Reproductibility Availability High Cost

Dulai P, Sirlin C, Loomba R. J Hepatol 2016;65:1006-16

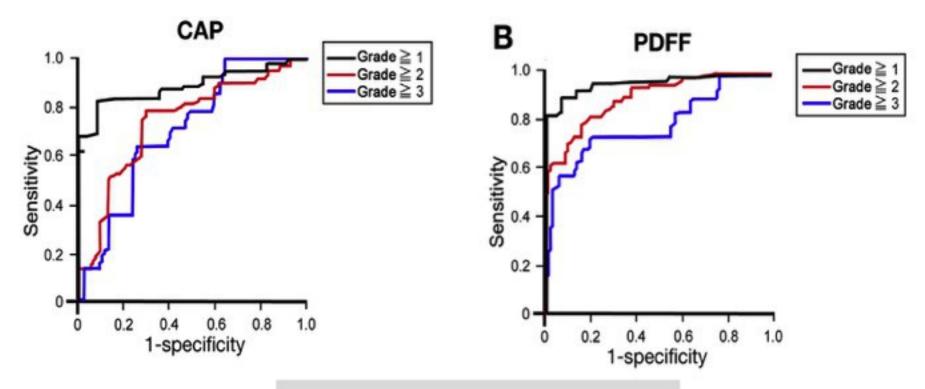
NAFLD: diagnostic strategy

CAP (FibroScan)


Sasso et al. Ultrasound in Med & Biol 2010; 36: 1825-35

CAP diagnostic performance summary

Authors	Year	Patients Total/NAFLD (n)	Etiologies	Steatosis Grading	Steatosis Prevalence (%)	Cut-off (dB/m)	AUC	Se (%)	Sp (%)	CC (%)
Sasso et al.	2010	115 / 17	Nixed	≥11% >22%	58 20	238 250	0.91	91 80	81 36 78	- - -
de Ledinghei et al.	Li	imited	l data	a in N	AFL	D pa	tier	its	85 94 91	77 82 91
Myers et al.	No	o cons	sensı	ual cu	ut-off	S			79 62 47	77 70 52
Sasso et al.	2012	615 / 0	ΗCV	≥11% ≥33% ≥66%	31 13 1	222 233 290	0.80 0.86 0.88	76 87 78	71 74 93	72 76 93
Friedrich-Rus et al.	st2012	45 / 46	NAFLD	≥11% ≥33% ≥66%	98 74 46	- 245 301	- 0.78 0.72	- 97 76	- 67 68	- - -


Castera L, Vilgrain V & Angulo P. Nat Rev Gastro & Hepatol 2013; 10:666-75

CAP diagnostic performance meta-analysis

Karlas T et al. J Hepatol 2017; in press

CAP vs. MRI

N= 127 Japanese NAFLD patients

Imajo et al. Gastroenterology 2016; 150: 626-37

CAP vs. MRI

	CAP		MRI-	PDFF	
Steatosis grade	Cutoff level, <i>dB/m</i>	AUROC	Cutoff level, %	AUROC	vs PDFF <i>P</i> value
≥1 ≥2 ≥3	236	0.88	5.2	0.96	.048 ^ª <.001 ^ª
>3	270 302	0.73	11.3 17.1	0.90	.015ª

N= 127 Japanese NAFLD patients

Imajo et al. Gastroenterology 2016; 150: 626-37

Park et al. Gastroenterology 2017; in press

- CAP is promising but needs to be better validated in patients with NAFLD (no consensual cut-offs)
- CAP needs to be compared to ultrasound that, despite its limitations, remains the most widely used tool for steatosis assessment.
- CAP is now implemented with the XL probe but most studies have been performed with M probe
- Quality criteria not well defined
- MRI outperforms CAP

Serum scores of steatosis

Tests	Year	Components	Patients Reference		AUROC	
SteatoTest®	2005	FibroTest, CT, TG,BMI, glycemia	884	LB	0.72-0.86	
Fatty (FLI)						
NAFL Score With	With different gold standards (US or LB)					
Hepat index	And populations					
Lipid Accumulation Product (LPA)	2010	JCA, VVC, TO	500		J.30	

Poynard et al. Comp Hepatol 2005; Bedogni et al. BMC Gastroenterol 2006; Kotronen et al. Gastro 2009; Lee et al. Dig Liver Dis 2010; Bedogni et al. BMC Gastroenterol 2010

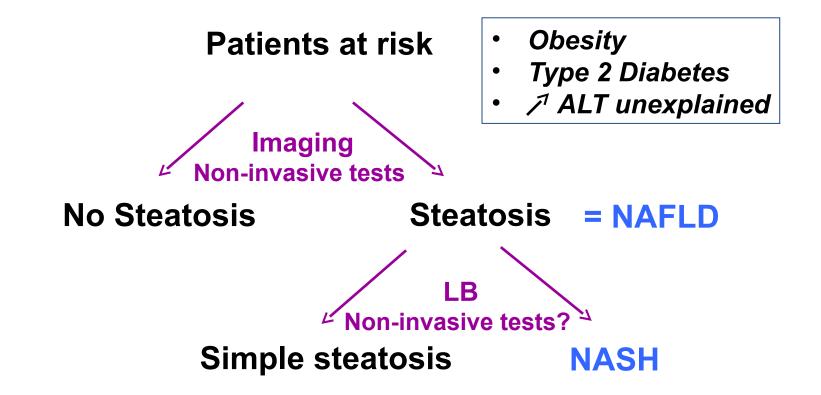
Recommendations

Recommendations

- US is the preferred first-line diagnostic procedure for imaging of NAFLD, as it provides additional diagnostic information (A1)
- Whenever imaging tools are not available or feasible (e.g. large epidemiological studies), serum biomarkers and scores are an acceptable alternative for the diagnosis of steatosis (B2)
- A quantitative estimation of liver fat can only be obtained by ¹H-MRS. This technique is of value in clinical trials and experimental studies, but is expensive and not recommended in the clinical setting (A1)

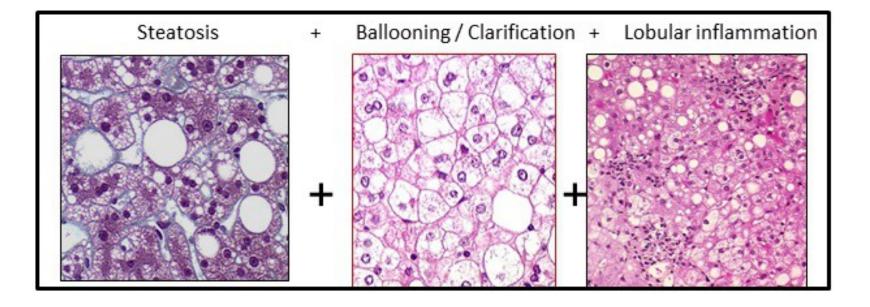
EASL-EASD-EASO Clinical practice Guidelines. J Hepatol 2016; 64: 1388-402.

Mr N... 55 yrs

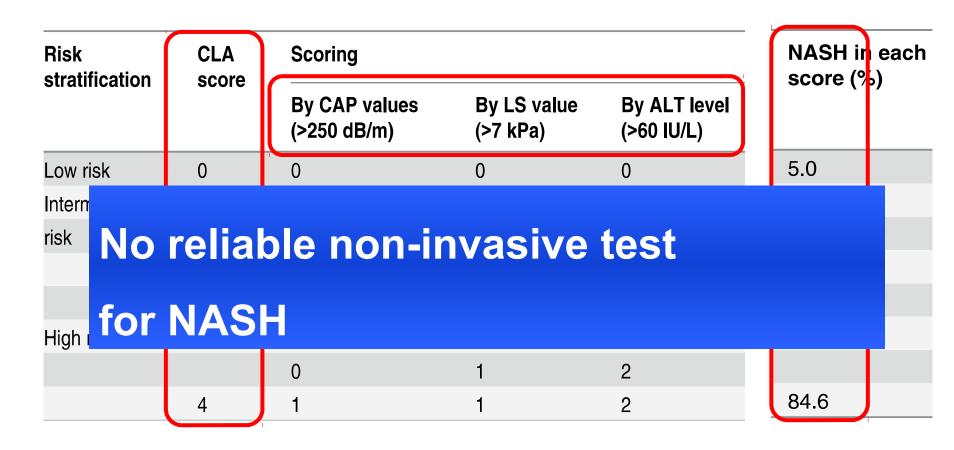

Steatosis very likely

Do you need further exams for the diagnosis?

1. Serum markers


- 2. Liver biopsy
- 3. None or other

NAFLD: diagnostic strategy

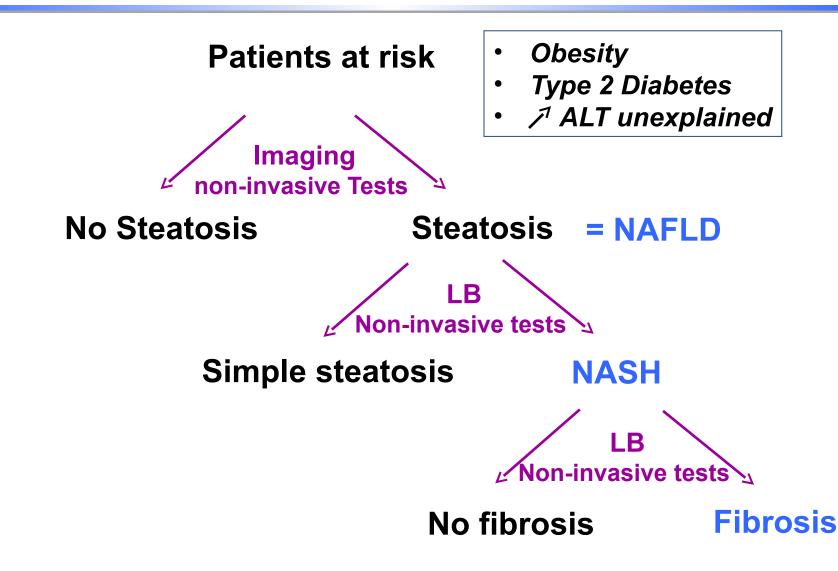

NASH = histologic definition

- > 5% steatosis
 - + ballooning / clarification hepatocytes
 - + lobular inflammation

Sanyal A et al. Hepatology 2011; 54: 344-53

NASH non-invasive diagnosis : CLA score

N= 183 patients with suspected NAFLD; 51% NASH


Lee et al. PlosOne 2016;

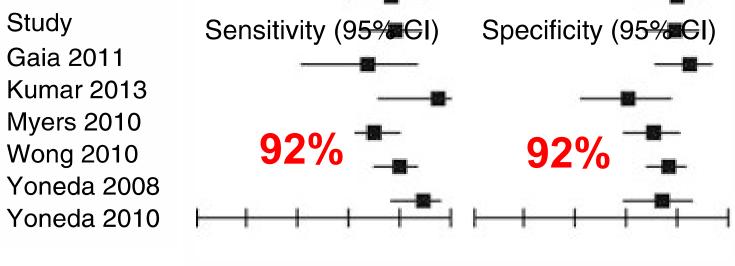
Mr N... 55 yrs

- Steatosis very likely
- Not keen for a liver biopsy
- Liver stiffness: 26 kPa (IQR 4.5)

How important is it to diagnose NASH?

NAFLD: diagnostic strategy

TE has high accuracy for cirrhosis


meta-analyses

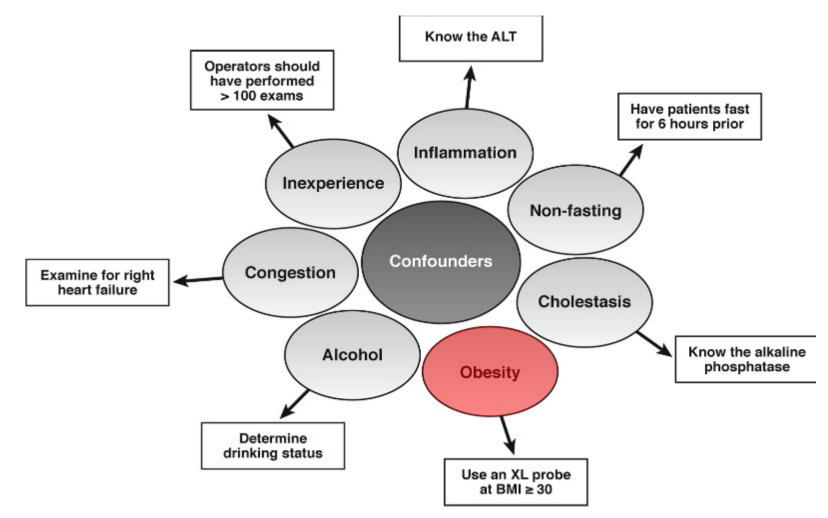
	Number of included studies	Number of included subjects for analysis	AUROC
			F4
Talwalkar ¹⁵	9	2,083	0.957
Stebbing ¹⁶	<u>22</u>	4,760	0.94
Fredrich-rust et al ¹⁷	50	8,206	0.94
Tsochatzis et al ¹⁸	<u>40</u>	7,723	N/A
Chon et al	<u>18</u>	2,772	0.929

Talwalkar et al. CGH 2007Friedrich-Rust et al. Gastroenterology 2008Stebbing et al. APT 2010Tsochatzis et al. J Hepatol 2011Chon et al. PLoS ONE 2012

TE has high diagnostic accuracy for NAFLD cirrhosis

Meta-analysis

 $0 \quad 0.2 \ 0.4 \ 0.6 \ 0.8 \ 1 \ 0 \ 0.2 \ 0.4 \ 0.6 \ 0.8 \ 1$


6 studies; n= 639 patients

Kwok et al. Aliment Pharmacol Ther 2014; 39: 254-69

Recommendations interpretation of TE results

- Correct interpretation of TE results in clinical practice must consider the following parameters:
 - IQR/ median value (<30%),
 - Serum aminotransferases levels (<5 x ULN),
 - BMI (use XL probe above 30 kg/m² or if skin-tocapsule distance is >25 mm),
 - Absence of extra-hepatic cholestasis,
 - Absence of right heart failure, or other causes of congestive liver
 - Absence of ongoing excessive alcohol intake
 (A1)

Confounders of liver stiffness summary for clinical practice

Tapper, Castera & Afdhal. Clin Gastroenterol Hepatol 2015; 13:60-7

FibroScan and NAFLD Comparison M & XL probe

Parameters	M probe	XL probe	р
Failure	10%	2%	0.002
Reliable result	67%	75%	0.093

N= 193 NAFLD patients

Wong et al. Am J Gastroenterol 2012; 107: 1862-71.

What about Novel techniques ?

ARFI

SWE

Novel techniques Advantages & disavantages

ARFI

Advantages

- Can be implemented on a regular US machine
- Good applicability
- Performance equivalent to TE

<u>Disadvantages</u>

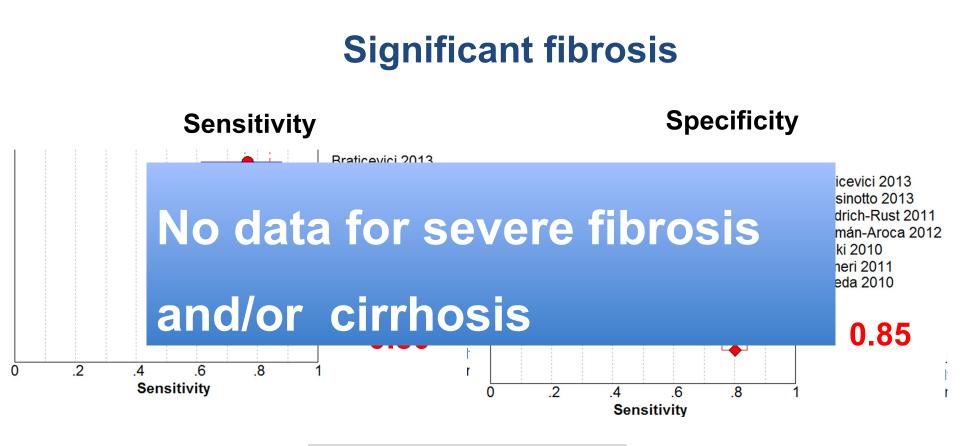
- Results in meters/sec
- Narrow range of values
- Quality criteria not well

defined

SWE

Advantages

- Can be implemented on a regular US machine
- High range of value (2-150 kPa)
- Performance equivalent toTE


<u>Disadvantages</u>

- Less well evaluated
- Quality criteria not well

defined

Friedrich-Rust, Poynard & Castera. Nat Rev Gastroenterol Hepatol 2016; 13; 402-11

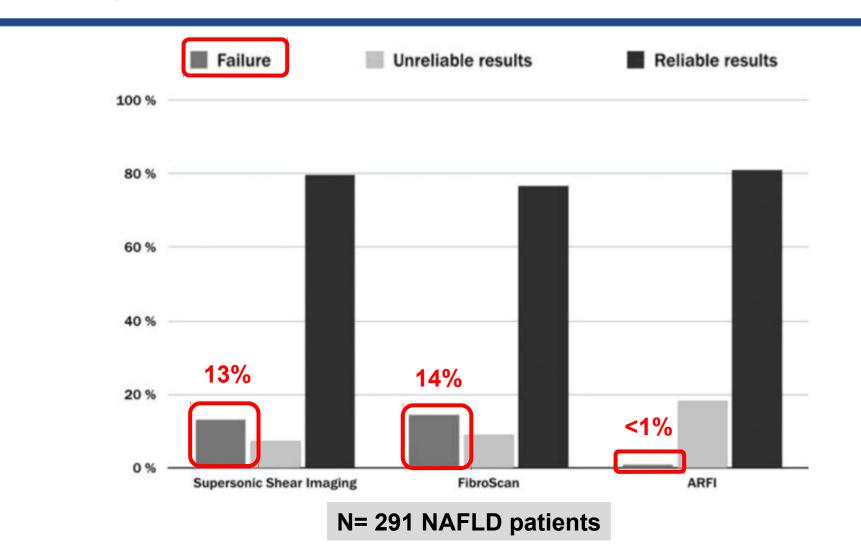
Performance of ARFI in NAFLD meta-analysis

7 studies; n = 723 patients

Liu et al. PlosOne 2015

Comparison between SWE, TE & ARFI NAFLD

SWE outperformed TE and ARFI for F≥2 only


P=0.004

Fibrosis Stage	AUROC (95% CI)	Fibrosis Stage	AUROC (95% CI)	Fibrosis Stage	AUROC (95% CI)
SSI, kPa \geq F2	0.86 (0.79-0.90)	FibroScan, kPa ≥F2	0.82 (0.76-0.87)	ARFI, m∕s ≥F2	0.77 (0.70-0.83)
≥F3	0.89 (0.83-0.92)	\geq F3	0.86 (0.80-0.90)	≥ F3	0.84 (0.78-0.89)
F4	0.88 (0.82-0.92)	F4	0.87 (0.79-0.92)	F4	0.84 (0.78-0.89)

N= 291 NAFLD patients

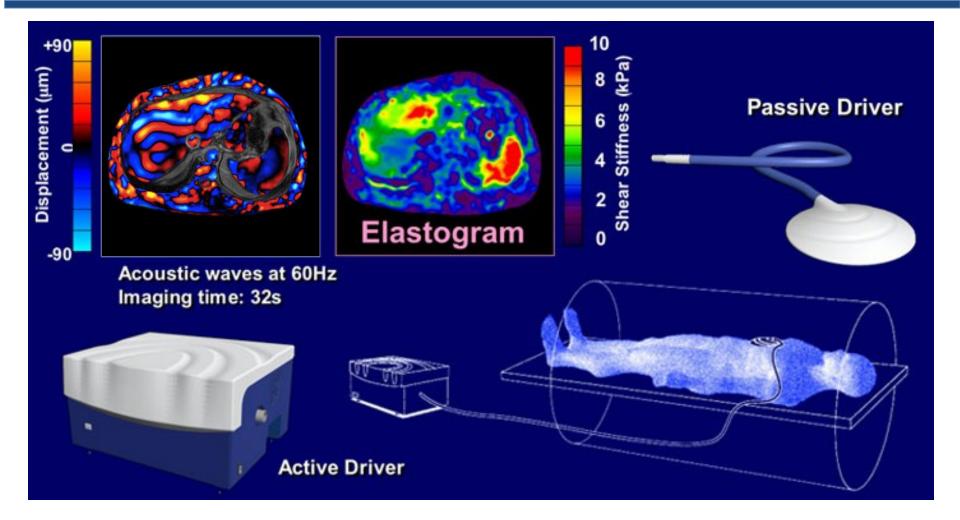
Cassinotto et al. Hepatology 2016; 63: 1817-27

Comparison between SWE, TE & ARFI Failure, unreliable results

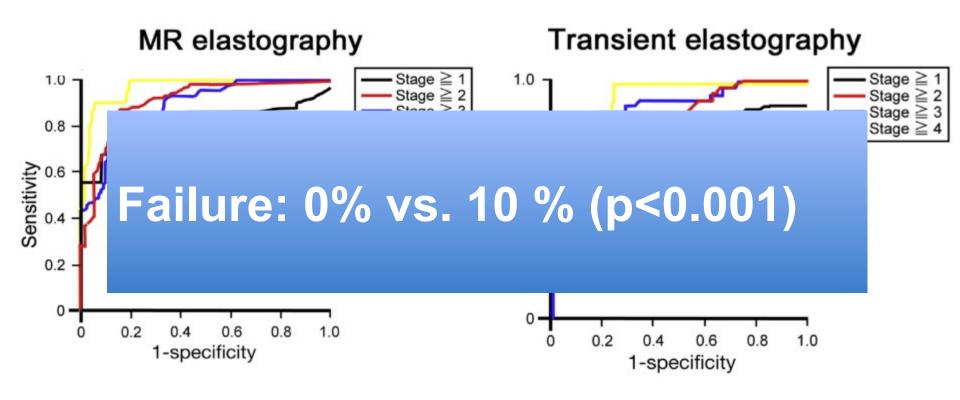
Cassinotto et al. Hepatology 2016; 63: 1817-27

Novel techniques ?

Insufficient data in NAFLD



ARFI


SWE

lagnetic resonance elastography

Muthupillai et al. Science 1995; 269: 1854-7

Diagnostic performance in NAFLD MR elastography vs. TE

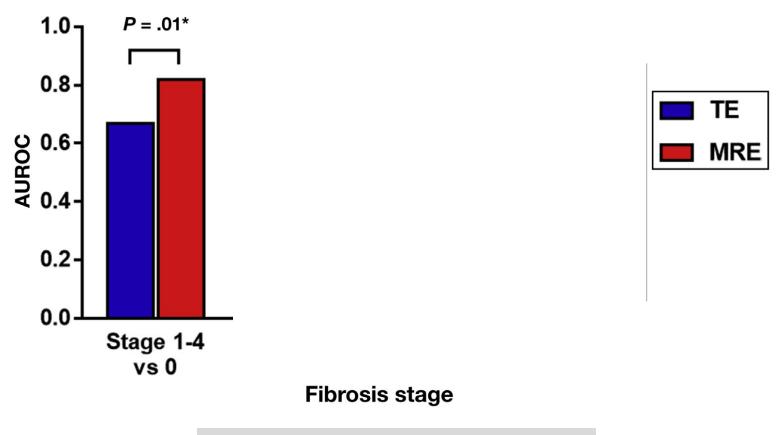
N= 142 Japanese NAFLD patients

Imajo et al. Gastroenterology 2016; 150: 626-37

Diagnostic performance in NAFLD MR elastography vs. TE

					0: 0.1 : 0.1			
	S [.]	Stage 0 vs stage 1-4				Stage 0–1 vs stage 2–4		
Modality	AUROC	95% CI	P value	vs MRE <i>P</i> value	AUROC	95% CI	P value	vs MRE <i>P</i> value
MRE TE	0.83 0.78	0.72–0.93 0.70–0.87	.003 .003	.466	0.91 0.82	0.86-0.96 0.74-0.89	<.001 <.001	.001 ^ª
	St	Stage 0-2 vs stage 3-4			S	tage 0-3 vs	s stage	4
Modality	AUROC	95% CI	<i>P</i> value	vs MRE <i>P</i> value	AUROC	95% CI	P value	vs MRE <i>P</i> value
MRE TE	0.89 0.88	0.83–0.94 0.79–0.97	<.001 <.001	.426	0.97 0.92	0.94-1.00 0.86-0.98	<.001 <.001	.049 ^a

N= 142 Japanese NAFLD patients


Imajo et al. Gastroenterology 2016; 150: 626-37

MR elastography vs. TE critical analysis

Cuf-offs			Cost		
Fibrosis stage	TE (n Cut-off level, <i>kPa</i>		ternal validat		JS dollars) TE
≥1 ≥2 ≥3 ≥4	7.0 11.0 11.4 14.0	0.78 0.82 0.88 0.92	USA United Kingdom France	2871 335 363	65 137 216 29

Imajo et al. Gastroenterology 2016; 150: 626-37

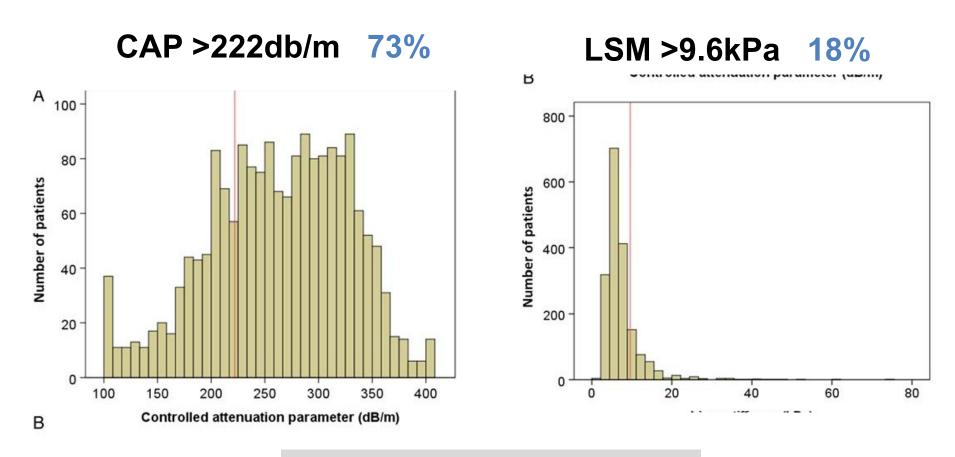
Diagnostic performance in NAFLD MR elastography vs. TE

N= 104 American NAFLD patients

Park et al. Gastroenterology 2017; in press

What about Serum biomarkers? comparison with TE

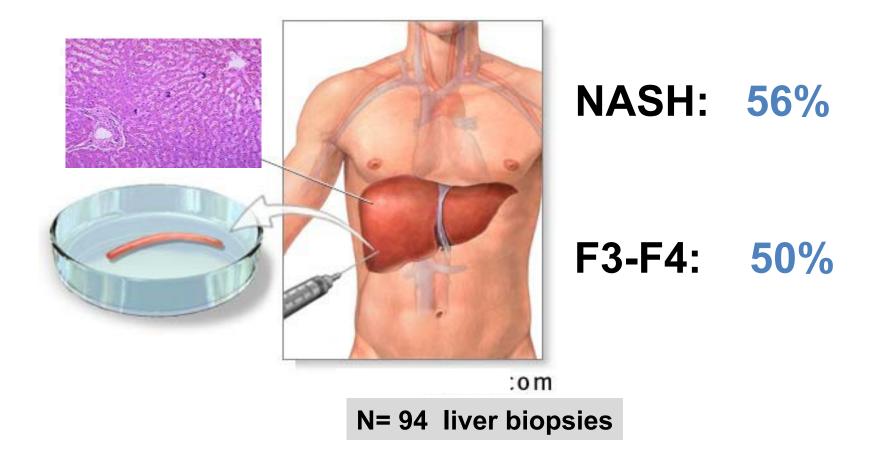
Fibrosis test	AUROC	
	F ≥3	F4
BARD	0.695 ± 0.024	0.694 ± 0.031
NFS	0.732 ± 0.024	0.766 ± 0.032
FibroMeter ^{NAFLD}	0.759 ± 0.023	0.779 ± 0.029
APRI	0.754 ± 0.023	0.767 ± 0.034
FIB4	0.780 ± 0.022	0.777 ± 0.033
Fibrotest	0.736 ± 0.024	0.761 ± 0.034
Hepascore	0.778 ± 0.022	0.807 ± 0.034
FibroMeter ^{V2G}	0.817 ± 0.020	0.824 ± 0.029
LSM	0.831 ± 0.019	0.864 ± 0.024


N= 360 NAFLD patients

Boursier et al. J Hepatol 2016; 65: 570-78

Take Home messages

- CAP is promising tool for non-invasive diagnosis of steatosis
- •.MRI-PDFF is currently the best tool but not ready for routine use
- There is currently no validated tool for non-invasive diagnosis of NASH and LB remains the reference standard.
- Non-invasive tests, particularly transient elastography, are accurate for diagnosing severe fibrosis / cirrhosis.


Screening diabetics for NAFLD

N= 1918 diabetics Chinese patients

Kwok et al. Gut 2016; 65: 1359-65

Screening diabetics for NAFLD

Kwok et al. Gut 2016; 65: 1359-65