

Organised by Pr Patrick Marcellin, APHC

15 & 16 January 2018

Palais des Congrès Paris

# Is global HCV eradication realistic?



Antonio Craxì Di.Bi.M.I.S., Università di Palermo antonio.craxi@unipa.it

PHC 2018 - www.aphc.info



# Antonio Craxi: disclosures

#### Ad Board and grants: Abbvie, BMS, Gilead, MSD, Intercept

Speaker: Abbvie, BMS, Gilead, MSD, Intercept

#### Slide credits



Hepatitis B and C Public Policy Association





# Fighting an infection: the semantics

- **Eradication:** permanent reduction to zero of the worldwide incidence of infection; intervention measures no longer needed
  - Only 1 example: smallpox
- Elimination: reduction to zero of incidence in a defined geographical area as a result of deliberate efforts; continued intervention measures required
- Control: reduction in the incidence, prevalence, morbidity, or mortality of an infectious disease to a locally acceptable levels; continued intervention measures required



# HCV: an old foe

- The origin of primate Flaviviridae is as ancient (35 million years) as the differentiation of primate species
- HCV co-evolved with human populations migratiNG out of Africa within the past 100-150,000 years
- The HCV genotype / subtype hierarchy encompassing at least 86 classified subtypes is much more recent
- Genotypes 6 and 4 originated 700 years and 350 years ago, and subtypes 1a and 1b < 100 years ago



1: Smith DB, Bukh J, Kuiken C, Muerhoff AS, Rice CM, Stapleton JT, Simmonds P. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes:updated criteria and genotype assignment web resource. Hepatology. 2014;59:318-27.

2: Pybus OG, Charleston MA, Gupta S, Rambaut A, Holmes EC, Harvey PH. The epidemic behavior of the hepatitis C virus. Science. 2001; 292:2323-5.

# The expanded Hepacivirus genus

- Highly diverse variants
  - Several candidate new species
  - Variable and highly erratic distribution in different mammalian species
- No association between host and virus phylogenies
  - Evidence for cross-species transmission
- Limited species barriers consistent with a zoonotic origin of HCV in humans





## **General interactions of hosts and viruses**



- Stable: maintains virus in ecosystem
- Evolving: passage of virus to naive population
- Dead---end: one way to different species
- Resistant host: infection blocked

#### 6

# **Regulators of viral epidemiology in a human population**



**Principles of Virology, ASM Press** 



# Estimated 70 Million Persons Living With HCV



Polaris Observatory HCV Collaborators. Lancet Gastroenterol Hepatol. 2017;2:161-176.

# 30 Countries Account for 80% of HCV Infections



Polaris Observatory HCV Collaborators. Lancet Gastroenterol Hepatol. 2017;2:161-176. Blach S, et al. AASLD 2016. Abstract 753. In 2013 HCV infection caused an estimated 700,000 deaths vs 1990: 67% higher cirrhosis and 291% HCC *Regional distribution of deaths shown by size of pie charts* 



Stanaway, Lancet 2016; GBD Lancet 2015

# The evolution of HCV therapy

Call



# Current DAAs allow treating all HCV patients



- by enrolling patients at all stages of disease and comorbidities (CKD, HIV)
- by pangenotypic/subtypic activity
- by lifting restrictions due to tolerability and DDIs



# Third (and last) wave HCV drugs

- GLE: pangenotypic NS3/4A protease inhibitor
- PIB: pangenotypic NS5A inhibitor
- GLE/PIB: once daily, oral, fixed-dose combination (300/120 mg) for GTs 1-6

# All third wave compounds are more potent and have a higher barrier to resistance as compared to former DAAs

- VOX: pangenotypic NS3/4A protease inhibitor
- SOF/VEL/(VOX): once daily, oral, fixed-dose combination (400/100/(100 mg) for GTs 1-6

# <sup>(6)</sup> Pangenotypic, RBV-free DAAs for 8-12 weeks available for most HCV patients

| Setting                  | EMA indications for pangenotypic, RBV-free regimens                                                                                                                         |                                                                                  |                                                                                                                                             |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Cotting                  | GLE/PIB                                                                                                                                                                     | SOF/VEL                                                                          | SOF/VEL/VOX                                                                                                                                 |  |  |  |
| Treatment<br>naive       | GT1-6 <ul> <li>No cirrhosis: 8 wks</li> <li>Compensated cirrhosis: 12 wks</li> </ul>                                                                                        | <ul> <li>GT1-6</li> <li>No cirrhosis or compensated cirrhosis: 12 wks</li> </ul> | <ul> <li>GT1-6</li> <li>No cirrhosis 8 wks</li> <li>Compensated cirrhosis:<br/>12 wks (8 weeks may be<br/>considered in GT3 pts)</li> </ul> |  |  |  |
| IFN/RBV *<br>experienced | <ul> <li>GT1, 2, 4, 5, 6</li> <li>No cirrhosis: 8 wks</li> <li>Compensated cirrhosis: 12 wks</li> <li>GT3</li> <li>No cirrhosis or compensated cirrhosis: 16 wks</li> </ul> | <ul> <li>GT1-6</li> <li>No cirrhosis or compensated cirrhosis: 12 wks</li> </ul> | <ul> <li>GT1-6</li> <li>No cirrhosis 8 wks</li> <li>Compensated cirrhosis:<br/>12 wks (8 weeks may be<br/>considered in GT3 pts)</li> </ul> |  |  |  |
| DAA<br>experienced       | <ul> <li>Not indicated</li> </ul>                                                                                                                                           | <ul> <li>Not indicated</li> </ul>                                                | <ul> <li>GT1-6</li> <li>No cirrhosis or compensated cirrhosis: 12 wks</li> </ul>                                                            |  |  |  |

#### \*Includes PR ± SOF for GLE/PIB and PR ± BOC, SMV, or TVR for SOF/VEL.

# Mortality Reduction Achieved by HCV Cure

Survival in ERCHIVES Veterans (N = 13,940\*+)[1]



\*For 18 mos of follow-up.

<sup>+</sup>BL cirrhosis: PrOD, 24.9%; LDV/SOF, 29.4%; untreated, 19.4%.

Butt AA, et al. Clin Infect Dis. 2017:65:1006-1011.
 Ioannou GN, et al. J Hepatol. 2017; [Epub ahead of print].

HCC Risk in DAA-Treated Veterans (n = 25,424‡)[2]



**‡**For 38,204 pt-yrs of follow-up.





# Features and outcomes of 4.147 patients included in RESIST-HCV cohort and treated with DAAs

|                                           | Mean<br>age | Gender<br>Males % | Liver<br>Complication | SVR %<br>3766(90.8%) | Death    | Liver related | Liver<br>unrelated |
|-------------------------------------------|-------------|-------------------|-----------------------|----------------------|----------|---------------|--------------------|
| Chronic<br>hepatitis<br>934 (22.5%)       | 62.2 ±12.7  | 533(57.1)         | 0                     | 834 (89.3)           | 6 (0.6)  | 1 (0.1)       | 5 (0.5)            |
| Cirrhosis<br>Child-Pugh A<br>2851 (68.7%) | 66.8±10.9   | 1646(57.7)        | 95 (3.3%)             | 2643 (92.7)          | 24 (0.8) | 10(0.4)       | 14(0.5)            |
| Cirrhosis<br>Child-Pugh B<br>362 (8.7%)   | 65.5±11.9   | 208(57.5)         | 50 (13.8%)            | 289 (79.8)           | 25 (6.9) | 14(3.9)       | 11(3.0)            |
| Р                                         | < 0.001     | 0.94              | < 0.001               | <0.001               | <0.001   | <0.001        | <0.001             |





#### **Liver-related mortality**







## Disease Eradication vs Elimination vs Control



# WHO: Elimination of HCV as a Public Health Threat

- Defined as achievement of measurable global targets in relation to infection and burden of disease
- Intensity of interventions required will vary by setting
  - Setting-specific model required to determine what is necessary to achieve the impact targets

| 2030 | Targets                  |     |
|------|--------------------------|-----|
| 90%  | Diagnosed                | eat |
| 80%  | Treated                  |     |
| 65%  | <b>Reduced Mortality</b> |     |



#### **Treatment of chronic Hepatitis C: new horizons**

#### <u>Aim at individual level</u>

Abolishing liver disease progression Regression of the hepatic damage Reducing liver and non-liver complications

#### A<u>im at community level</u>



At individual level: treat infection/ liver disease

At community level: treating infection; those with high potential for transmission; reduce desease burden



## Curte and future HCV global scenario











#### http://polarisobservatory.org/polaris\_view/hepC.htm accessed Jan 11, 2018

#### Progress Toward HCV Elimination Goals by Countries

2016

| On Track for WHO Elimination Targets                                                           | Working Towards Elimination                                                                                                                                                                                                                    | Elimination Unachievable Given Present Policy                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                               |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Iceland<br>Qatar<br>Australia<br>Georgia<br>Japan<br>Netherlands<br>Egypt<br>France<br>Germany | United States<br>Spain<br>Austria<br>Sweden<br>Malta<br>UK<br>Korea<br>Luxembourg<br>Brazil<br>Mongolia<br>Norway<br>Estonia<br>Portugal<br>Canada<br>Lithuania<br>Lebanon<br>New Zealand<br>Italy<br>Slovenia<br>Poland<br>Iran<br>Uzbekistan | Ireland<br>Hungary<br>Saudi Arabia<br>Latvia<br>Morocco<br>Switzerland<br>Denmark<br>Pakistan<br>Hong Kong<br>India<br>Chile<br>Belgium<br>Romania<br>Israel<br>Czech Republic<br>Finland<br>Algeria<br>China<br>Oman<br>Slovakia<br>Tunisia<br>Peru<br>Bahrain<br>Puerto Rico<br>Greece<br>Iraq<br>Papua New Guinea<br>Libya<br>Taiwan<br>Cameroon | Kyrgyzstan<br>Croatia<br>Venezuela<br>Kazakhstan<br>Viet Nam<br>Jordan<br>Bulgaria<br>Argentina<br>UAE<br>Ethiopia<br>Cuba<br>Burundi<br>Malaysia<br>Colombia<br>Russia<br>Azerbaijan<br>Philippines<br>Mexico<br>Cambodia<br>Indonesia<br>Panama<br>Turkey<br>El Salvador<br>South Africa<br>Nigeria<br>Afghanistan<br>Ghana<br>Yemen<br>Syria<br>Madagascar |  |
| http://polarisobservatory.org/polaris_view/hepC.h                                              | ntm accessed Jan 11, 2018                                                                                                                                                                                                                      | Thailand                                                                                                                                                                                                                                                                                                                                            | . toriya                                                                                                                                                                                                                                                                                                                                                      |  |

## **Cascade of care for HCV infection, by WHO region, 2015**



Source: WHO estimates, conducted by the Center for Disease Analysis. See Annex 2.



**GLOBAL HEPATITIS REPORT, 2017** 

## Cute and future HCV scenario: Europe



http://polarisobservatory.org/polaris\_view/hepC.htm accessed Jan 11, 2018

G

## Cute and future HCV scenario: Europe





http://polarisobservatory.org/polaris\_view/hepC.htm accessed Jan 11, 2018

#### Cut and future HCV scenario: USA



http://polarisobservatory.org/polaris\_view/hepC.htm accessed Jan 11, 2018

6

#### Cut and future HCV scenario: USA



http://polarisobservatory.org/polaris\_view/hepC.htm accessed Jan 11, 2018

#### Cute and future HCV scenario: Africa



http://polarisobservatory.org/polaris\_view/hepC.htm accessed Jan 11, 2018

G

#### Cut and future HCV scenario: Africa



http://polarisobservatory.org/polaris\_view/hepC.htm accessed Jan 11, 2018



- Short treatment duration
- Once daily dosing
- No baseline resistance testing
- No or minimal AEs
- Kidney friendly
- Pangenotypic

Costs are decreasing and availability increasing



# Failures mostly occur with 1st and 2nd wave DAA regimens (*but some also with 3rd wave....*)



\*Clinical trials with GZR/EBR, PTV/RTV/OBV + DSB, SOF + DCV ± RBV, SOF/LDV, SOF + SIM ± RBV, SOF/VEL.[1-11] †Data from the HCV TARGET study; pts treated with varied regimens that included ≥ 2 DAAs.[12] ‡Clinical trials with SOF + DCV, SOF + RBV, SOF/VEL.[13,14]

Kwo P, et al. Gastroenterology. 2017;152:164-175.
 Ferenci P, et al. N Engl J Med. 2014;370:1983-1992.
 Feld JJ, et al. J Hepatol. 2016;64:301-307.
 Luetkemeyer AF, et al. Clin Infect Dis. 2016;62:1489-1496.
 Afdhal N, et al. N Engl J Med. 2014;370:1889-1898.
 Kowdley KV, et al. N Engl J Med. 2014;370:1883-1493.
 Kowdley KV, et al. N Engl J Med. 2014;370:1879-1888.
 Kwo P, et al. Hepatology. 2016;64:370-380.
 Lawitz E, et al. Lancet. 2014;384:1756-1765.
 Feld JJ, et al. N Engl J Med. 2015;373:2599-2607.
 Suklowski MS, et al. EASL 2017. Abstract SAT-229.
 Nelson DR, et al. Hepatology. 2015;671:127-1135.
 For GR, et al. Hepatology. 2015;673:2689-2617.



# **Decompensated Cirrhosis**

- Treatment options are more limited than for pts without cirrhosis or with compensated cirrhosis
  - SVR rates are generally lower; treatment remains controversial
  - Protease inhibitors are not recommended for CPT B or C
- Continuing role for ribavirin, extended treatment duration
  - No options for **CPT B or C** patients with severe renal impairment

| Dealeran | Duration/RBV Inclusion |                |  |
|----------|------------------------|----------------|--|
| Regimen  | RBV Eligible           | RBV Ineligible |  |
| SOF/VEL  | 12 wks + RBV†          | 24 wks         |  |

\*Initial RBV dose: 600 mg/day, increase as tolerated. +Weight-based RBV; low initial dose\* for CPT C.

# Third wave regimens not relevant in this setting



### **Disease Eradication vs Elimination vs Control**

Many HCV patients unknown to the health care system

TREAT AND CURE 100% OF INFECTED

# **HCV Population**



۲



# **Screening Approaches**

#### Risk-based

• Identify and test only those with risk factors

#### Pros:

- High yield
- Cheaper

#### Cons:

- Contact with HC system
- Must know & discuss risk factors
- Test may be stigmatized
- Miss those without RFs

#### **Population-based**

• Test a segment of the population eg. baby boomers, immigrants

#### Pros:

- High coverage rate
- Easy to implement
- Cons:
  - Need to choose the pop'n
  - Low yield, expensive
  - May be stigmatizing to pop'n eg. immigrants

#### Not mutually exclusive

# Improving screening - New technologies



Saliva or blood rapid antibody test



Point-of-care PCR test



**Dried Blood Spot** 



# Nonspecialists Can Effectively Treat HCV



#### Dore G - Kirby Institute 2017 (http://kirby.unsw.edu.au/research-programs/vhcrp-newsletters)

The Kirby Institute. Monitoring hepatitis C treatment uptake in Australia (Issue 7). Available at: https://kirby.unsw.edu.au/report/monitoring-hepatitis-c-treatment-uptake-australia-issue-7-july-2017.

# **Cirrhosis Determination Feasible in Primary Care**

- AAR (AST/ALT ratio):
  - AST/ALT
- APRI (AST platelet ratio index) score:
  - (AST/upper limit of normal)/platelet count (expressed as platelets x 109/L) x 100
- Modified APRI score:
  - [Age (yr) x (AST/upper limit of normal)]/
     [serum albumin (g/dL) x platelet count
     (expressed as platelets x 109/L) x 100]
- FIB-4:
  - Age (yr) x AST (IU/L)/[platelet count (x 109/L) x VALT (IU/L)]

**Critical to assess for advanced fibrosis or cirrhosis** 

- Informs when specialist referral needed
- Indicates need for post-SVR
   HCC monitoring
- Affects HCV regimen selection

# High risk populations for HCV



# HCV DAA Therapy Highly Effective in PWIDs



# SVR12 rates also > 90% among pts with current/recent IDU

- 90.4% in C-EDGE CO-STAR (n = 136)
- 94% in SIMPLIFY (n = 102)
- 98% in pooled analysis from 6 phase III trials (mITT; n = 63)

Feld JJ, et al. N Engl J Med. 2014;370:1594-1603.
 Puoti M, et al. AASLD 2014. Abstract 1938.
 Grebely J, et al. EASL 2017. Abstract FRI-236.
 Grebely J, et al. Clin Infect Dis. 2016;63:1405-1411.
 Grebely J, et al. Clin Infect Dis. 2016;63:1479-1481.
 Zeuzem S, et al. Ann Intern Med. 2015;163:1-13.
 Dore GJ, et al. AASLD 2017. Abstract 1182.



#### Hard-to-reach groups are also high transmitters of HCV





#### **HIV/HCV co-infection in The Netherlands – the outcomes**



Boerekamps A, et al. CROI 2016; Oral #136; Rijnders B, et al. CROI 2016 Oral #137LB

•



#### Road to Cure is Long for People Who Inject Drugs and Prisoners

- ~8,000,000 of 16 million PWID infected
  - 48-92% prevalence
- 1,546,500 of 10 million prisoners infected
  - E. Europe and Central Asia ~20.2%
  - USA and W. Europe ~15.4%
  - "Able" to test and treat\*



#### Disease Eradication vs Elimination vs Control

PREVENT ALL NEW ACUTE AND CHRONIC INFECTIONS

Reinfection likely in high risk groups



#### The 'Anna Karenina principle'

"All happy families look alike; each unhappy family is unhappy in its own way"

Patients with chronic HCV present patterns consistent with Anna Karenina effect

**Treated or on treatment** 

They all showed willingness to be treated, link to care, adherence to treatments

Difficult-to-treat

Heterogeneous group, with poor willingness to be treated and difficult link to care



#### HCV Reinfection Over 5 Yrs by Study Population



Simmons B, et al. Clin Infect Dis. 2016:62:683-694.



#### AA polymorphisms and RASs in 5 patients with acute hepatitis C

Brancaccio et al.Clin Gastroent Hepatol. In press

|     |                      | CORE                          |       | NS3                                                          | NS5A NS5B |                                                                                                               | NS5B  |                                                                                                                                                                                                                   |
|-----|----------------------|-------------------------------|-------|--------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pts | SOF/LDV<br>treatment | Natural<br>polymorphisms      | RASs  | Natural<br>polymorphisms                                     | RASs      | Natural polymorphisms                                                                                         | RASs  | Natural polymorphisms                                                                                                                                                                                             |
|     | Clustered patients   |                               |       |                                                              |           |                                                                                                               |       |                                                                                                                                                                                                                   |
| 1   | 12 weeks             | T75A*, T110N*                 | S122T | S7A, L14F, S61A,<br>T72TI, D103ND,<br>R118RW<br>(1-181aa)    | None      | G2DG, K6R, S17T, L34V,<br>L37F, T83M, V138I, V164A,<br>V174T, A197T, del-225(1-<br>447aa)                     | V321I | T19S, L31IV, L36M, L47Q, N117R, R120N, T130N, T132S, F162Y, G198K,<br>E202D, A207T, A210S, A218S, N231S, A300S, E333A, K355Q, Q464E, V499T,<br>R510K, S549G, del-571<br>(1-592aa)                                 |
| 2   | 8 weeks              | T75A*, T110N*                 | S122T | S7A, V48I, S61A(1-<br>181aa)                                 | A92T      | K6R, S17T, L34V, L37F,<br>T56TI,T83M, T135A, V138I,<br>V164A, V174T, del-187 (1-<br>447aa)                    | V321I | A16TA, T19S, L36M, L47Q, R98K, N117R, R120N, , T130N, E131EG, T132S, F162Y, G198K, E202D, A207T, A210S, A218S, N231S, C242S, A300S, E333A, K355Q, K441Q, Q464E, V499T, R510K, S549G, del-570 (1-592aa)            |
| 3   | 12 weeks             | T75A*, L97LF,<br>T110N*       | S122T | S7A, L14F, S61A(1-<br>181aa)                                 | Ү93Н      | K6R, S17T, L34V, L37F,<br>T55TA, T83M, P89PL,<br>H128HY, V138I, V164A,<br>V174T, A197T, del-207 (1-<br>447aa) | V321I | T19S, L36M, L47Q, N117R, R120N, T130N, T132S, G198K, E202D, A207T,<br>A210S, A218S, N231S, A300T, E333A, K355Q, E437KE, Q464E, V499T, R510K,<br>Q514R, S549G, del-580<br>(1-592aa)                                |
| 4   | 8 weeks              | T75A*, T110N*                 | S122T | S7A, L13LF, L14F,<br>S42SF, S61A, S93SF,<br>S133SF(1-181aa)  | None      | K6R, S17T, L37F,T83M,<br>V138I, V174T, A197T, del-229<br>(1-447aa)                                            | V321I | A16T, T19S, L36M, L47Q, R98K, N117R, R120N, T130N, T132S, F162Y, T181N, G189K, E202D, A207T, A210S, A218S, N231S, A300S, G328EG, E333A, K335Q, K441Q, Q464E, V499T, R510K, S549G, W574L, L588S, del-589 (1-592aa) |
|     | Out cluster patient  |                               |       |                                                              |           |                                                                                                               |       |                                                                                                                                                                                                                   |
| 6   | 12 weeks             | K67R, R70Q*,<br>T75A*, L178LF | Y56F  | I18V, V48I, I71TI, A87S,<br>A150V, V132I, V170I<br>(1-181aa) | P58PL     | K6R, S17T, L37F,<br>K44R,M133I, V164A, K166R,<br>V174T, del-222 (1-447aa)                                     | None  | T19S, L31IV, L36M, L47Q, K81KR, V116I, R120N, K124E, E131V, F162Y, A210S,<br>K212KR, N231S, R254KR, A300S, E333A, A338V, K355Q, I412IM, Q461L, R510K,<br>T520N, Q544R, S549G, R566P, del-580 (1-592aa)            |

# Modeling: HCV Elimination in US Requires Enhanced Screening of High-Risk Populations

- Mortality reduction possible with treatment scale-up alone
- Incidence reduction requires **both** treatment scale-up and increased screening





# Modeling: Level of Scale-up Needed Depends on Existing Service Levels

% of HCV-Infected PWID Requiring HCV Tx to Achieve 90% Reduction in Incidence and Prevalence by 2030





# What About HCV Reinfection in PWID?



Among 28 pts who completed HCV treatment in urban methadone clinic with follow-up viral testing, no reinfections identified through 1 yr posttreatment follow-up[6]

1. Aspinall EJ, et al. Clin Infect Dis. 2013;57(suppl 2):S80-S89. 2. Midgard H, et al. J Hepatol. 2016;64:1020-1026. 3. Weir A, et al. Drug Alcohol Depend. 2016;165:53-60. 4. Dore GJ, et al. Ann Intern Med. 2016; 2016;165:625-634. 5. Dore GJ, et al. AASLD 2017. Abstract 195. 6. Sylvestre DL, et al. AASLD 2017. Abstract LB-18.



# **Multiple Prevention Strategies Are Needed**

Among PWID: harm reduction efficacy estimates against HCV

- Current OST reduces risk of acquiring HCV by 50%
- High-coverage NSP reduces HCV acquisition risk by ~ 21%, although effect was stronger in Europe (56%)
- In combination, both high-coverage NSP and OST can reduce risk of acquiring HCV by ~ 76%

# HIV+ MSM in UK Model: Elimination Will Require High Treatment + More Testing or Harm Reduction



Martin NK, et al. HIV/Viral Hepatitis Coinfection Mtg. Paris, France. 2017. Martin NK, et al. Clin Infect Dis. 2016;62:1072-1080.



# HIV+ MSM in Swiss Model: Any Incidence Decrease Not Possible Without Harm Reduction



IFN based and current tx uptake (22%/yr)
 2nd-generation DAAs and current tx uptake (22%/yr)

-- 2nd-generation DAAs and increased tx uptake (100%/yr)

Salazar-Vizcaya L, et al. Hepatology. 2016;64:1856-1869.

# Use of DAAs to reduce global HCV burden





#### HCV care cascade and path to disease eradication: barriers and potential solutions

#### BARRIERS



From: Konerman MA and Lok ASF, Clinical and Translational Gastroenterology (2016) 7, e193

SOLUTIONS



