

Centre Hospitalier Régional Universitaire de Lille

Liver transplantation issues in 2018 Minimisation of immunosuppression in the long term : what is it for ?

Chairs: Didier SAMUEL (France) Pierre-Alain CLAVIEN (Switzerland) Speakers: Dominique THABUT (France) Sébastien DHARANCY (France)

Considerable improvements have been made in acute rejection and short-term patient/graft survival

Year of transplant

Progressive enrichment in drugs leading to a stepwise improvement in survival, but...

Weak improvements have been made in long-term patient survival

What are the exact statements regarding long-term complications after Liver Transplantation ?

A / Cardiovascular diseases are the leading cause of nonhepatic mortality after LT

B / De novo cancers are the leading cause of non-hepatic mortality after LT

C / The RR to develop *de novo* cancer is 2 to 15 fold higher in transplant patients than in the general population

D / Life expectancy after LT is similar than general population

Life expectancy after LT Stable « survival deficit » as compared with general population

Aberg F et al. Hepatology 2014

The evolving mortality in liver transplantation

- Renal insufficiency/failure was present in 17% of pre-LT, 47% of post-LT by 1 year, and 64% of post-LT patients overall
- Post-transplant renal insufficiency was strongly associated with increased overall mortality beyond 1 year (HR: 4.10, 95%CI: 2.87–5.86; P<0.001)

The evolving mortality in liver transplantation

Watt KDS, et al. Am J Transplant. 2010

Causes of mortality after LT in "real life" The Montpellier LT team center

Indications	ALD	HCV	HCC	HBV	Other	Total
Causes of death	n = 206	n = 74	n = 57	n = 25	n = 79	
Recurrence	13/55 23.6%	6/21 28.6%	11/19 57.9%	1/4 25%	10/19 52.6%	41/118 34.7%
Non-hepatic cancer	18/55 32.7%	5/21 23.8%	4/19 21%	2/4 50%	3/19 15.8%	32/118 27.1%
Cardiovascular	8/55 14.5%	2/21 4.7%	1/19 5.3%	1/4 25%	2/19 10.5%	14/118 11.9%
Infection	6/55 10.9%	4/21 9.5%	1/19 5.3%	0	1/19 5.3%	12/118 10.2%
Rejection	2/55 3.6%	2/21 4.7%	0	0	1/19 5.3%	5/118 4.2%
Others	8/55 14.5%	2/21 4.7%	2/19 10.5%	0	2/19 10.5%	14/118 11.9%
Total	55	21	19	4	19	118

Faure S et al. J Hepatol 2012

De novo cancer after LT

TABLE 1. Relative Risks of Neoplasia in Liver Transplant Recipients in Comparison with a Sex- Matched and Age-Matched Population				
Type of Neoplasia	Relative Risk			
Overall	2-4			
Squamous and basal	20-70			
cell skin cancer				
Lymphoma	10-30			
Head and neck cancer	4-7			
In alcoholic liver	25			
disease				
Lung cancer	1.7-2.5			
Colorectal cancer	3-12			
In ulcerative colitis	25-30			
Prostate cancer	Not increased			
Breast cancer	Not increased			
Kidney cancer	5-30			
Kaposi's sarcoma	100			
Hepatocellular carcinoma	3.4			

Herrero JI et al, Liver Transplant 2005

De novo cancer after LT

Figure 1: Overall cumulative incidence of any *de novo* cancer (excluding nonmelanoma skin cancer) in the transplanted and general populations.

Collett D, Am J Transplant 2010

De novo cancer after LT in France

	Solid cancer	Oral cancer	Lung cancer	Digestive cancer	Colorectal cancer	Oesophageal cancer
Hérault registry		000000	and a second	and the second se		
Gross incidence	339.8	26.9	49.0	70.1	59.1	6.7
95% CI lower limit	337.2	26.1	48.0	68.9	58.0	6.3
95% CI upper limit	342.5	27.6	50.0	71.3	60.2	7.1
Standardized incidence	203.4	17.8	29.5	39.9	33.3	4.0
95% CI lower limit	199.4	17.7	29.3	39.6	33.1	4.0
95% CI upper limit	207.4	17.9	29.7	40.2	33.5	4.0
LT population						
Gross incidence	1310.8	352.9	302.5	327.7	176.5	100.8
95% CI lower limit	998.8	209.0	171.8	190.3	84.1	37.8
95% CI upper limit	1720.2	595.9	532.7	564.4	370.1	268.7
Standardized incidence	760.0	281.4	150.5	145.3	88.8	41.8
95% CI lower limit	721.7	268.2	148.9	143.7	88.1	41.6
95% CLupper limit	800.3	295.3	152.1	147.0	89.6	42.1
Relative risk	3.7	15.8	5.1	4.6	2.7	10.5
95% CI lower limit	2.8	9.4	2.9	2.6	1.3	3.9
95% CI upper limit	4.9	26.7	9.0	7.8	5.6	27.9
P value	< 0.001	< 0.001	< 0.001	< 0.001	0.007	< 0.001

Table 1. Comparison of the solid cancer incidences post-LT and in the general population. Incidences expressed per 100,000 persons and per annum

95% CI = 95% confidence interval

Study including 322 recipients

Carenco C, Liver Int 2015

Survival is impaired in case of *de novo* cancer after Liver Transplantation

Carenco C, Liver Int 2015

What are the exact statements regarding long-term complication after Liver Transplantation ?

A/ Cardiovascular diseases are the leading cause of nonhepatic mortality after LT

B / De novo cancers are the leading cause of non-hepatic mortality after LT

C / The RR to develop *de novo* cancer is 2 to 15 fold higher in transplant patients than in the general population

D / Life expectancy after LT is similar than general population

Immunosuppression after LT: good intentions, accelerating life countdown...

What's CNI minimization?

- A / Tac C0 Levels 10-15 ng/mL
- B / Tacrolimus withdrawal
- C / Target Tac C0 levels at 5 ng/mL
- D / Tac C0 levels 5-8 ng/mL
- E / Immunosuppresion withdrawal

Immunosuppression withdrawal because liver is a « tolerogenic organ » !

TABLE 2. Elective Withdrawal Studies								
	Adult or	DDLT		Years from LT				
Center (No. of Patients)	Pediatric	or LDLT	Baseline IS	to Tapering	Tolerant	Failure*		
Pittsburgh ($n = 95$)	Both	DDLT	TAC or CyA + AZA	Mean, 8.4 ± 4.7	18 (18.9%)	40 (42.1%)		
London ($n = 18$)	Adult	DDLT	CyA, AZA, prednisolone	Median, 7 (5-11)	5 (27.7%)	13 (72.2%)		
Kyoto ($n = 115$)	Pediatric	LDLT	TAC	>2	49 (42.6%)	20 (17.4%)		
Murcia (n= 9)	Adult	DDLT	CyA	Median, 5.1 (2-9)	3 (33.3%)	6 (66.6%)		
Rome ($n = 34$, only HCV)	Adult	DDLT	CyA	Mean, 5.3 ± 1.7	8 (23.5%)	26 (76.5%)		
New Orleans $(n = 18)$	Adult	DDLT	TAC	>0.5	1 (5.6%)	17 (94.4%)		
Winnipeg (n = 26) [†]	Adult	DDLT	CyA + AZA or prednisolone	Mean, 4.3 ± 1.1	8 (30.8%)	18 (69.2%)		
Miami $(n = 104)^{\ddagger}$	Adult	DDLT	TAC or CyA	Median, 4 (3.6-4.6)	23 (22.1%)	81 (61.5%)		
Barcelona (n $= 102$)	Adult	DDLT	TAC or CyA	Median, 7.9	40 (77.9%)	62 (60.0%)		

*Either due to rejection, immune-mediated hepatitis, noncompliance, resumption of immunosuppression, disease recurrence, or other. The remaining patients were deemed "weaning in progress" in all studies.

[†]Randomized controlled trial of ursodeoxycholic acid given at 15 mg/kg/day versus placebo in withdrawing patients; 3 patients developed autoimmune hepatitis recurrence after withdrawal.

[‡]45 received donor bone marrow cell infusions; 59 did not.

The liver as a tolerogenic organ More or less !

		TABLE	2. Elective Withdrawal St	tudies			
	Adult or	DDLT					
Center (No. of Patients)	Pediatric	or LDLT	Baseline IS	to Tapering	Tolerant	Failure*	
Pittsburgh (n $= 95$)	Both	DDLT	TAC or CyA + AZA	Mean, 8.4 ± 4.7	18 (18.9%)	40 (42.1%)	
London $(n = 18)$	Adult	DDLT	CyA, AZA, prednisolone	Median, 7 (5-11)	5 (27.7%)	13 (72.2%)	
Kyoto ($n = 115$)	Pediatric	LDLT	TAC	>2	49 (42.6%)	20 (17.4%)	
Murcia (n= 9)	Adult	DDLT	CyA	Median, 5.1 (2-9)	3 (33.3%)	6 (66.6%)	
Rome ($n = 34$, only HCV)	Adult	DDLT	CyA	Mean, 5.3 ± 1.7	8 (23.5%)	26 (76.5%)	
New Orleans $(n = 18)$	Adult	DDLT	TAC	>0.5	1 (5.6%)	17 (94.4%)	
Winnipeg (n = $26)^{\dagger}$	Adult	DDLT	CyA + AZA or prednisolone	Mean, 4.3 ± 1.1	8 (30.8%)	18 (69.2%)	
Miami (n = $104)^{\ddagger}$	Adult	DDLT	TAC or CyA	Median, 4 (3.6-4.6)	23 (22.1%)	81 (61.5%)	
Barcelona (n = 102)	Adult	DDLT	TAC or CyA	Median, 7.9	40 (77.9%)	62 (60.0%)	

*Either due to rejection, immune-mediated hepatitis, noncompliance, resumption of immunesuppression, disease recurrence, or other. The remaining patients were deemed "weaning in progress" in all studies. *Randomized controlled trial of ursodeoxycholic acid given at 15 mg/kg/day versus placebo in patients developed autoimmune hepatitis recurrence after withdrawal.

[‡]45 received donor bone marrow cell infusions; 59 did not.

IS withdrawal = russian roulette so far...

Current concept of CNI minimization

Reduction in Tacrolimus Trough Levels Achieved in Different Studies

Nashan B et al. Liver Transplant 2009;15:136–147

What's CNI minimization?

A / Tac C0 Levels 10-15 ng/mL

B / Tacrolimus withdrawal

C / Target Tac C0 levels at 5 ng/mL

D / Tac C0 levels 5-8 ng/mL

E / Immunosuppresion withdrawal

Clinical observation (1)

- 58 years old woman
- Past medical history: diabetes, dyslipidemia, smoking 30 pack/year, COPD, appendectomy
- Weight 55 kg, Size 1m68, BMI 19
- LT on October 30 2007 for decompensated alcoholic cirrhosis with hepatorenal syndrome (Child Pugh C10, MELD 24)
- Native liver without HCC
- Immunosuppressive regimen:
 - Solupred withdrawn in May 2008
 - Tacrolimus 6 mg x2 /d (C0: 10 ng/mL)
 - MMF (Cellcept) 1 g × 2/day

What are the *de novo* cancer risk factors identified in this patient ?

- A / Age > 50 years
- B / History of alcoholic liver disease
- C / Gender
- D / Smoking
- E / Exposure to CNI
- F / Weight

Environmental risk factors

Table 3. Risk Factors for Solid Organ Malignancy:Multivariate Analysis

Risk factor	HR (95% CI)	P value
Age by decade	1.33 (1.05-1.66)	.014
Smoking history	1.72(1.06 - 2.79)	.029
ALD	2.14 (1.22-3.73)	.007
PSC	2.62 (1.50-4.56)	.001

ALD, alcohol-related liver disease; CI, confidence interval; HR, hazard ratio; PSC, primary sclerosing cholangitis.

Study including 798 recipients

Watt KD, Gastroenterology 2009

Univariate analysis of solid	cancer risk factors (n = 465)				
	No solid cancer (N = 400)	Solid cancer (N	= 65)	v	
Variable	n/N (%)	n/N (%)	P va	lue OR	95% CI
Age at LT > 50 years	222/400 (55.5)	40/65 (61.5)	0.3	36	
Vale	296/400 (74)	50/65 (76.9)	0.6	52	
excessive OH before LT	241/371 (65)	53/63 (84.1)	0.0	2.9	(1.4; 5.8
xcessive OH after LT	44/383 (11.5)	12/64 (18.8)	0.1	10	
Diabetes	142/391 (36.3)	26/64 (40.6)	0.5	51	
moking before LT	200/372 (53.8)	54/64 (84.4)1	<0.0	0001 4.6	(2.3; 9.4
Smoking after LT	119/370 (37.2)	36/64 (56.3)	0.0	0002 2.7	(1.6; 4.6
Obesity	60/381 (15.8)	17/62 (27.4)	0.0	2 2	(1.1; 3.8
atients included in the stu-	dy (N = 465): multivariate analys	is of solid cancer risk fact	tors		
/ariable	P value		OR		Wald 95% C
Smoking before LT	<0.0001		5.5		(2.5; 12)
smoking before LT	0.0001		2.2		(2.2, 12)
Obesity	0.0184	s for <i>de novo</i> solid cancer	2.2	limus	(1.1; 4.3)
Table 3. Univariate and m	0.0184 nultivariate analysis of risks factor blid cancer after LT with tacrolime	IS	2.2	limus	
Table 3 . Univariate and m	0.0184 nultivariate analysis of risks factor	IS	2.2		
Table 3. Univariate and m Risks factors for <i>de novo</i> so	0.0184 nultivariate analysis of risks factor blid cancer after LT with tacrolime Tacrolimus 1 year (43 with o	IS	2.2 rs post-LT with tacro		
Dbesity Table 3. Univariate and m Risks factors for <i>de novo</i> so Variable	0.0184 nultivariate analysis of risks factor blid cancer after LT with tacrolime Tacrolimus 1 year (43 with 0 Univariate analysis	s & 204 without C)	2.2 rs post-LT with tacro Multivariate a	nalysis	(1.1; 4.3)
Dbesity Table 3. Univariate and m Risks factors for <i>de novo</i> so Variable Age >50	0.0184 nultivariate analysis of risks factor olid cancer after LT with tacrolime Tacrolimus 1 year (43 with o Univariate analysis P value OR	s & 204 without C)	2.2 rs post-LT with tacro Multivariate a	nalysis	(1.1; 4.3)
Dbesity Table 3. Univariate and m Risks factors for <i>de novo</i> so Variable Age >50 Male	0.0184 nultivariate analysis of risks factor blid cancer after LT with tacrolime Tacrolimus 1 year (43 with 0 Univariate analysis P value OR 0.37 NS	s & 204 without C)	2.2 rs post-LT with tacro Multivariate a	nalysis	(1.1; 4.3)
Table 3. Univariate and m Risks factors for <i>de novo</i> so Variable Age >50 Male Alcohol pre-LT Alcohol post-LT	0.0184 nultivariate analysis of risks factor olid cancer after LT with tacrolime Tacrolimus 1 year (43 with o Univariate analysis P value OR 0.37 NS 0.7 NS 0.07 NS 0.07 NS 0.27 NS	s & 204 without C)	2.2 rs post-LT with tacro Multivariate a	nalysis	(1.1; 4.3)
Desity Table 3. Univariate and m Risks factors for <i>de novo</i> so Variable Age >50 Male Alcohol pre-LT Alcohol post-LT Diabetes mellitus	0.0184 nultivariate analysis of risks factor olid cancer after LT with tacrolime Tacrolimus 1 year (43 with o Univariate analysis P value OR 0.37 NS 0.7 NS 0.07 NS	s & 204 without C)	2.2 rs post-LT with tacro Multivariate a	nalysis	(1.1; 4.3) 95% CI
Table 3. Univariate and m Risks factors for de novo so Variable Age >50 Male Alcohol pre-LT Alcohol post-LT Diabetes mellitus Tobacco pre-LT	0.0184 nultivariate analysis of risks factor blid cancer after LT with tacrolime Tacrolimus 1 year (43 with 0 Univariate analysis P value OR 0.37 NS 0.7 NS 0.7 NS 0.77 NS 0.27 NS 0.27 NS 0.26 NS 0.0001 5.1	(2.1–12.6)	2.2 rs post-LT with tacro Multivariate a	nalysis	(1.1; 4.3) 95% CI
Table 3. Univariate and m Risks factors for de novo so Variable Age >50 Male Alcohol pre-LT Alcohol post-LT Diabetes mellitus Tobacco post-LT Tobacco post-LT	0.0184 nultivariate analysis of risks factor blid cancer after LT with tacrolime Tacrolimus 1 year (43 with 0 Univariate analysis P value OR 0.37 NS 0.7 NS 0.7 NS 0.77 NS 0.27 NS 0.27 NS 0.27 NS 0.27 NS 0.27 NS 0.27 S 0.27 S 0.28 S 0.27 S 0.27 S 0.28 S 0	us 2 & 204 without C) 95% CI	2.2 rs post-LT with tacro Multivariate a P value	nalysis OR	(1.1; 4.3) 95% CI
Table 3. Univariate and m Risks factors for <i>de novo</i> so Variable Age >50 Male Alcohol pre-LT Alcohol post-LT Diabetes mellitus Tobacco pre-LT	0.0184 nultivariate analysis of risks factor blid cancer after LT with tacrolime Tacrolimus 1 year (43 with 0 Univariate analysis P value OR 0.37 NS 0.7 NS 0.7 NS 0.77 NS 0.27 NS 0.27 NS 0.26 NS 0.0001 5.1	(2.1–12.6)	2.2 rs post-LT with tacro Multivariate a P value	nalysis OR	(1.1; 4.3)

*Mean annual tacrolimus blood trough concentration > 8 ng/ml during the first year after LT and > 7 ng/ml during the 3 years after LT.

LT, liver transplantation; NS, non-significant; C, cancer. CNI, calcineurin inhibitors.

Carenco C, Liver Int

Smoking and de novo cancer

Herroro JI, Liver Transpl 2011

Experimental arguments in favor the linkage between CNI and cancer

Number of lung metastases in a model of renal cancer metastases in SCID mice

Maluccio et al. Transplantation 2003

CNI promotes tumor growth, metastasis and angiogenesis

Guba et al. Transplantation 2004

American Journal of Transplantation

C. Carenco, E. Assenat, S. Faure, Y. Duny, G. Danan, M. Bismuth, A. Herrero, B. Jung, J. Ursic-Bedoya, S. Jaber, D. Larrey, F. Navarro, G.-P. Pageaux ⊠ First published: 3 February 2015 Full publication history

LT 1st year post LT 5th year post LT 15th year p

CNI exposure and the risk of solid cancers after LT A dose effect relationship

Relationship between mean TC during the first year and occurrence of solid cancers

Carenco C, et al. Am J Transplant 2015

What are the *de novo* cancer risk factors identified in this patient?

- A / Age > 50 years
- B / History of alcoholic liver disease
- C / Gender
- D / Smoking
- C / Exposure to CNI
- D / Weight

Clinical observation (2)

- October 2012 (5 years post LT)
- Gradual development of chronic renal dysfunction
 - eGFR at 40 mL/min/kg
 - Proteinurea 0.2 g/L
- Arterial hypertension despite bitherapy
- Liver function tests : normal values

What are you proposing?

- A / Tac whithdrawal and monotherapy with mycophenolate
- B / Dual therapy mycophenolate + everolimus
- C / Switch from Tac to everolimus monotherapy
- D / No change for now...
- E / Low dose of Tac (target C0 3-5 ng/mL) + everolimus start

CRD after **LT**

Ojo AO. et al, New Engl J Med 2003

CNI withdrawal and monotherapy MMF for serious CNI-induced side effects

Lassaily G, et al. Submitted

CNI minimization with antimetabolites/induction agents in de novo liver transplantation

Author	Design	IS	AR	Renal function (eGFR*), mean	F-UP (mo)	Comments
Boudjema et al 2011	Randomized controlled	CNI+S (#100) rCNI+MMF+S (#95)	46% vs. 30% (p=0.024)	78 ± 26 vs. 90 ± 30 (p = 0.004**)	12	rCNI+MMF+S: superior outcome of renal function and rejection rates
Benitez et al 2010	Randomized controlled	TAC+S (#16) vs. ATG+rTAC \rightarrow weaning 3 mo. (#21)	31.2% vs. 66.7% (p=0.03)	NA	12	Study stopped prematurely due to ↑rejection in very-low TAC arm (<5ng/mL)
Neuberger et al 2009	Randomized controlled	(A)TAC-C+S vs. (B)rTAC+MMF+S vs. (C) anti-CD25+ +drTAC+MMF+S	27.6% vs. 29.2% vs. 19.0%	eGFR decrease by 23.61 vs. 21.22 vs. 13.63 mL/min at M12 (A vs C, p=0.012; A vs. B, p=0.199)	12	Superior renal function for anti- CD25+drTAC+MMF vs. TAC-C. Non superiority of rTAC+MMF vs. TAC due to overlapping blood levels
Nashan et al 2009	Randomized controlled	sTAC+MMF+S + (#28) vs. rTAC+MMF+S (#27)	17.8% vs. 18.5%	CrCl 66.3 (17.6-110.2) 78.6 (49.6-172.8)	6	Comparable efficacy

AR: acute rejection; ATG: anti-thymocyte globulin; CNI: calcineurin inhibitor; CNI-C: CNI control; CsA: cyclosporin; dCNI: delayed CNI; drCNI: delayed-reduced CNI; dTAC: delayed TAC; EVR: everolimus; F-UP: follow-up; IS: immunosuppression; MMF: mycophenolate mofetil; rCNI: reduced CNI; rTAC: reduced TAC; sTAC: standard TAC; S: steroids; SRL: sirolimus; TAC: tacrolimus; TAC-C: TAC control
CNI minimization with antimetabolites/induction agents in de novo liver transplantation

Author	Design	IS	AR	Renal function (eGFR*), mean	F-UP (mo)	Comments
Otero A et al 2009	Randomized controlled	TAC+S (#79) vs. antiCD25+TAC+ MMF+S (#78)	26.6% vs. 11.5% (p=0.017)	sCr (mg/dL) 1.2 vs. 1.0	6	Overlapping between arms for TAC levels
Bajjoka et al 2008	Retrospective cohort	CNI+MMF+S (#80) vs. ATG+dCNI+ +MMF+S	26% vs. 16% (p=0.08)	43.7 vs. 57.4 (p< 0.001)	12	ATG induction with delayed CNI: lower incidence of early acute rejection and superior renal function
Lin et al 2005	Non- randomized controlled	TAC+S (#18) vs. BAX+rTAC+S (#27)	27.8% vs. 11.1 (p=ns)	Median CrCl at M3 57 vs. 72 mL/min (p=0.04)	6	Comparable efficacy of BAX+rTAC+S vs. TAC+S
Yoshida et al 2005	Randomized controlled	CNI+MMF+S (#76) vs. anti- CD25+drCNI+M MF+ S (#72)	27.7% vs. 23.2% (p=0.68)	69.5 vs. 75.4 (p=0.038) at 6 mo. 73.2 vs. 71.7 (p=0.587) at 12 mo.	12	Superior renal function under delayed rCNI only in the early post- transplant period

AR: acute rejection; ATG: anti-thymocyte globulin; BAX: basiliximab; CNI: calcineurin inhibitor; CNI-C: CNI control; CsA: cyclosporin; dCNI: delayed CNI; drCNI: delayed-reduced CNI; dTAC: delayed TAC; EVR: everolimus; F-UP: follow-up; IS: immunosuppression; MMF: mycophenolate mofetil; rCNI: reduced CNI; rTAC: reduced TAC; S: steroids; SRL: sirolimus; TAC: tacrolimus; TAC-C: TAC control.

EVR + rTAC after liver transplantation: the H2304 study design

A multicenter, open-label, randomized, controlled study to evaluate the efficacy and safety of EVR to eliminate or reduce TAC in *de novo* liver transplant recipients

Enrollment into TAC-WD arm was stopped due to higher rejection rates and protocol was amended based on DMC recommendation (Apr 2010)

De Simone P, et al. Am J Transplant .2012;12:3008-20;

Clear separation and clinically relevant reduction in TAC exposure in EVR + rTAC arm

Saliba F, et al. Am J Transplant. 2013;13:1734–1745.

Renal function in patients on EVR + reduced TAC

Saliba F, et al. Am J Transplant. 2013;13:1734–1745.

What are you proposing?

- A / Tac whithdrawal and monotherapy with mycophenolate
- B / Dual therapy mycophenolate + everolimus
- C / Switch from Tac to everolimus monotherapy
- D / No change for now...
- E / Low dose of Tac (target C0 3-5 ng/mL) + everolimus start

Lower risk of serious cardio-vascular events on EVR + reduced TAC

Cumulative incidence of the first serious CV event

Bernhardt P, Suisse, ILTS 2016, Abs. O-07

Clinical observation (3)

- In February 2014: mandibular pain
- Oto-rhino-laryngology assessment: Endobuccal epidermoid carcinoma reaching the mandibular region
- Head Neck Oncology comittee:
 - Surgery (pelvimandibulectomy with lymphadenectomy under temporary tracheostomy)
 - Adjuvant radiotherapy.
- IS : Tac and MMF...

What is your management with IS ?

- A / Tac whithdrawal and monotherapy with mycophenolate
- B / Dual therapy mycophenolate + everolimus
- C / Switch from Tac to everolimus now
- D / Switch to everolimus one month after surgery
- E / No change for now...
- F / Sparing strategy with Tac to target C0 5-8 ng/mL

My management would be...

A / Tac whithdrawal and monotherapy with mycophenolate

- B / Dual therapy mycophenolate + everolimus
- C / Switch from Tac to everolimus now
- D / Switch to everolimus one month after surgery
- E / No change for now...
- F / Sparing strategy with Tac to target C0 5-8 ng/mL

- A / Tac whithdrawal and monotherapy with mycophenolate
- B / Dual therapy mycophenolate + everolimus
- C / Switch from Tac to everolimus now
- D / Switch to everolimus one month after surgery
- E / No change for now...
- F / Sparing strategy with Tac to target C0 5-8 ng/mL

Blocking mTOR inhibits protein synthesis, cell cycle transition and restores apoptosis

NATURE REVIEWS DRUG DISCOVERY

mTOR Inhibitors in recipients with de novo cancer

Use of Everolimus as a Rescue Immunosuppressive Therapy in Liver Transplant Patients With Neoplasms

Judith Gomez-Camarero, Magdalena Salcedo, Diego Rincon, Oreste Lo Iacono, Cristina Ripoll, Ana Hernando, Cecilia Sanz, Gerardo Clemente, and Rafael Bañares

Transplantation 2007

Conversion to everolimus dramatically improves the prognosis of de novo malignancies after liver transplantation for alcoholic liver disease

- Retrospective study
- De novo SOT after LT for ALD
- 83 patients : 38 pts EVR
- EVR :
 - One year survival 77, 4 % vs 47,2
 %
 - 5 years survival35,2% vs 19,4 %
 - p = 0,003
 - RR 0,447

Thimonier E, Clin Transpl 2014

Conversion to everolimus dramatically improves the prognosis of de novo malignancies after liver transplantation for alcoholic liver disease

2014

Basical-Pivotal IS regimen for ALD Synergistic action

Before 6 months

Basical-Pivotal IS regimen for ALD Synergistic action

The modern trend in high risk *de novo* SOT

During 1st months

The modern trend in high risk *de novo* SOT

Clinical observation (4)

- EVL initiation after surgery 0.75 mg x 2/jr
- Mycophenolate withdrawal
- Tapering use of Tac
- At the end 2016 : metastatic lung progression
- Systemic chemotherapy by ERBITUX and TAXOL
- Reduced EVL C0 level < 5
- Death in october 2017

Conclusions

1) Patients take benefit from CNI sparing strategies reducing :

- *De novo* solid cancers
- HCC recurrence
- Serious cardio vascular events
- Chronic renal dysfonction

2) However few patients may develop humoral rejection (AMR)

3) Interest to develop new tools to individualize management of IS minimization and to identify « High risk patients »

Management of liver recipients

Vilfredo Pareto (1848–1923)

Italian sociologist, economist and philosopher. He made several important contributions to economics, particularly in the study of income distribution and in the analysis of individuals' choices

Pareto principle « 80% of effects are the products of 20% of causes »

Most of the concerns are concentrated in few patients !

BACK UP

What about Donose specific antibody (DSA) usual terms of the Need for precision What about Donose specific antibody (DSA) usual terms of the Need for precision

De novo DSA after liver transplantation Controversial impact

De novo donor-specific anti-HLA antibodies mediated rejection in liver-transplant patients

Arnaud Del Bello, ^{1,2} Nicolas Congy-Jolivet,^{2,3,4} Marie Danjoux,⁵ Fabrice Muscari,^{2,6} Laurence Lavayssière, ¹ Laure Esposito, ¹ Isabelle Cardeau-Desangles, ¹ Joëlle Guitard, ¹ Gaëlle Dörr,^{1,2} David Milongo, ¹ Bertrand Suc,^{2,6} Jean Pierre Duffas,⁶ Laurent Alric,^{2,7} Christoph e Bureau,^{2,0} Céline Guilbeau-Frugier,^{2,5} Lionel Rostaing^{1,2,9} and Nassim Kamar^{1,2,9}

De Novo Donor-Specific HLA Antibodies Decrease Patient and Graft Survival in Liver Transplant Recipients

H. Kaneku^{1,*}, J. G. O'Leary², N. Banuelos³, L. W. Jennings², B. M. Susskind², G. B. Klintmalm² and P. I. Terasaki^{1,3} Received 02 November 2012, revised 16 Janua and accepted 04 February 2013

De novo DSA HR 1,99

Low CNI level Impact on *de novo* DSA development

O'Leary, AJT,

				DSA-	DSA+	p-value	
Immunosuppression	Induction			24%	60%	0.001	
	Tacrolimus ¹ Mycophenolate ¹			73% 62%	42 % 60 %	<0.001 0.50	
	Rapamycin ¹ Steroids ¹			16% 40%	29% 18%	0.20	
HLA mismatches (total) 2 DQ HLA mismatches			6 (5–7) 27%		7 (6–8) 51 %	0.07	
Antibody characteristics	Class II preformed that was also present at the protocol biopsy			0%	22%	0.001	
	Class II de novo			0%	82%	<0.001	
		Uni	variate analys	sis	Multi	ivariable analy	sis
/ariables		Odds ratio	95% CI	p Value	Odds ratio	95% CI	p Value
Cyclosporine (compared to tacrolimus	at 1 year ¹	2.61	1.48-4.62	< 0.001	2.5	1.35-4.63	0.004
Sirolimus at 1 year ¹	1.83	0.99-3.4	0.055	0.63	0.23-1.7	0.359	
Steroids at 1 year ¹	0.51	0.28-0.9	0.021	0.67	0.35-1.28	0.229	
Avcophenolate vs Azathioprine/none	1.07	0.63-1.81	0.805	1	0.54-1.86	0.998	
ow level of calcineurin inhibitor in the	g/m 2.3	1.14-4.66	0.02	2.66	1.21–5.84	0.015	
	I				Kan	eku, AJT,	
					201	3	

mTOR inhibitors and **DSA**

Evolution of donor-specific antibodies (DSA) and incidence of *de novo* DSA in solid organ transplant recipients after switch to everolimus alone or associated with low dose of calcineurin inhibitors

Clin T	ransplant,	2014
--------	------------	------

Antibody-mediated rejection Take home messages

- AMR is a reality
 - Acute AMR: high sensitized recipients
 - Chronic AMR: IS minimization
- Crossmatch T/B, HLA DSA monitoring
- Liver graft biopsy protocol
- To define therapeutic protocol