How to improve long term outcome after liver transplantation?

François Durand Hepatology & Liver Intensive Care University Paris Diderot INSERM U1149 Hôpital Beaujon, Clichy

PHC 2018 – www.aphc.info

Long term outcome after liver transplantation in France 1994-2014

Data from Agence de la Biomédecine (www.agence-biomedecine.fr)

Decreased mortality: reasons for improvements

- Better selection of candidates
- Better preparation for transplantation
- Improvements in surgical techniques
- Improvement in procurement and preservation solutions
- Improvements in immunosuppression
- Better post-operative care
 - Earlier management of infection
 - Management of acute kidney injury...

Long term outcome after liver transplantation in France 1994-2014

Data from Agence de la Biomédecine (www.agence-biomedecine.fr)

Causes of late mortality: mainly unrelated to the liver

Watt KD et al. American Journal of Transplantation 2010; 10: 1420. Rubin A et al. Transplant International 2013; 26: 740.

Late mortality in liver transplantation: multifactorial

Expected trends in liver transplantation

- More patients with NASH
 - More comorbidities
 - Cardiovascular risk
- Less patients with HCV cirrhosis
- Older age at transplantation
- More patients with impaired renal function
 - Impact of the MELD score

Post-transplant survival according to pretransplant creatinine clearance

Nair S et al. Hepatology 2002; 35: 1179.

Improve the results of LT: target #1

Prevent/treat disease recurrence

Prevention/eradication of HCV ≈ 100%

- Recurrence of HCC
 - 10-15%
- Primary sclerosing cholangitis
 - 10-30%
 - no treatment
- Primary biliary cholangitis
 - 10%
- Auto-immune hepatitis
 - Not uncommon

Improve the results of LT: target # 2

Management of dysmetabolic syndrome

Post-transplant				
Diabetes	33%			
Hypertension	60%			
Dyslipidemia	50%			
Obesity	30%			

NASH: second leading cause of cirrhosis in candidates for LT

Wong RJ et al. Gastroenterology 2015; 148: 547. Charlton MR. Liver Transplantation 2016; 22: S71.

Improve the results of LT: target #3

Prevent/cure de novo malignancy

Watt KD et al. Gastroenterology 2009; 137: 2010.

Prevent/cure de novo malignancy

Modifiable risk factors

Risk of lung, head and neck, esophageal, kidney and urinary tract cancer according to smoking status

Herrero JI et al. Liver Transplantation 2011; 17: 402.

De novo malignancy: mTOR inhibitors

Controlled trials in kidney transplantation

Authors	Campistol JM			Alberu J		
Immunosuppression	SRL + CsA + St	SRL + St	p value	CNI	SRL	p value
Patients	215	215		275	555	
Follow up	5у	5y		2у	2y	
Skin cancer	7.4%	3.7%	0.09	4.3%	1.2%	<0.001
Non skin cancer	9.6%	4%	0.03	2.1%	1%	0.06

Campistol JM et al. J Am Soc Nephrol 2006; 17: 581. Alberu J et al. Transplantation 2011; 92: 303.

Limitations of mTOR

inhihitore

	Tacrolimus ± MMF 1 month			
	TAC standard	EVR + TAC reduced	EVR +TAC discontinuation	
Patients	243	245	231	
Acute rejection	7%	3%	_*	0.03
Composite acute rejection, graft loss, death	9.7%	6.7%	-	ns
GFR 1 year (mL/min/1.732)	70	81	-	0.001
Wound healing problems	14%	18%	-	ns

* Enrollment prematurely discontinued: too high rate of rejection

Fung J et al. Liver Transplantation 2012; 18: S109

Target # 4: protect the kidney

- Treat pre-transplant episodes of AKI
 - Pre-transplant AKI impacts on post transplant outcome
- Delayed introduction of CNIs in patients with post-operative AKI
 - Basiliximab + steroids + MMF without CNIs during the first 7-14 days

CNIs minimization

- Low target trough levels
- Adjunction of MMF
- Control of hypertension
- Control of diabetes
- Nephroprotective approaches

Target # 5: Humoral rejection and DSA

1270 patients

Multivariate analysis on the risk of death

	HR	p val	alue		HR	p value
Preformed DSA	1.6	<0.001		Preformed iGg3 DSA	2.4	<0.001
AA recipient	1.8	<0.001		AA recipient	1.9	<0.001
HCV	1.7	<0.001		нси	1.7	<0.001
Donor age > 50	1.4	0.006		Donor age > 50	1.4	0.01
	No D	SA	SA Preformed iGg3 DSA		р	
Liver-related death	6%	6		12%	0.004	

Which therapy ?

O'Leary JG et al. Am J Transplant 2015; 15: 1003

Take home messages

- Significant improvements in early mortality have been achieved
- Improvements in late mortality still need to be achieved
- HCV cure will improve long term outcomes
- NASH as a growing indication will negatively impact on long term outcomes
- Late deaths are mainly unrelated to the liver
 - Comorbidities need a multidisciplinary approach
- The role of humoral rejection needs to be better understood
- The pool f donors is limited
 - Think about transplant benefit in the selection of candidates

