

16 January 2018

Hepatitis B: is there still a role for interferon ?

Pietro Lampertico

Gastroenterology and Hepatology Division Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico University of Milan

PHC 2018 - www.aphc.info

Advisory Board/Speaker Bureau for:

- BMS, ROCHE, GILEAD SCIENCES, GSK, ABBVIE, MSD, ARROWHEAD, ALNYLAM, JANSSEN

Outline of the presentation

- Peg-IFN for NUC naïve patients
 - Pre- and on-treatment predictors
 - Peg-IFN for NUC treated patients
 - De novo combination
 - Switch to or add-on strategies
 - New HBV biomarkers

Peg-IFN for NUC-naive patients

What can we achieve with Peg-IFN alfa-2a in CHB?

Treatment aims to enable patients to achieve inactive CHB with sustained immune control

Approximately 20-30% of patients respond to treatment with Peg-IFN alfa-2a1,2

- Peg-IFN alfa-2a treatment can also result in off-treatment immune control2,3
- Potential long-term clinical benefits of sustained immune control after a finite course of Peg-IFN alfa-2a therapy:

Freedom from potentially life-long treatment4

No long-term safety concerns4

Decreased risk of cirrhosis and liver cancer5,6

HBsAg clearance (clinical cure)2

1. Lau GK, et al. N Engl J Med 2005;352:2682–95; 2. Marcellin P, et al. Hepatol Int 2013;7:88–97 ; 3. Marcellin P, et al. Gastroenterology 2009;136:2169–79; 4. Perrillo RP, et al. Hepatology 2006;43:S182–93; 5. EASL HBV guidelines, J Hepatol 2012;57:167–85; 6. Liaw YF, et al. Antivir Ther 2010;15:25–33

Baseline prediction score for Asian HBeAg positive CHB A multicenter retrospecive study

Chan H et al, submitted 2017

Baseline prediction scores for HBeAg negative CHB A multicenter retrospective study

323 HBeAg negative CHB patients treated with Peg-IFN alfa 2a

Four baseline variables: age, ALT, HBV genotype, qHBsAg Three baseline variables; age, qHBsAg, HBV DNA

Lampertico P et al, submitted 2018

Genetic variation in STAT4 predicts response to IFNalpha therapy for HBeAg positive Chinese CHB

466 HBeAg-positive CHB patients treated with IFNa-2b or peg-IFNa-2a therapy for 48 weeks

<u>Multivariate Analysis:</u> STAT 4 rs7574865 (GG genotype): OR 0.34, 95%Cl 0.21-0.55, p<0.0001 Gender (female): OR 2.09, 95%Cl 1.25-3.49, p=0.01 Baseline ALT (>120 IU/L): OR 1.80, 95%Cl 1.00-3.23, p=0.05

Jiang DK et al, Hepatology 2016;63:1102-1111

IFNL4 rs368234815 and rs117648444 variants predict off-treatment HBsAg loss in IFN-treated HBeAg-neg CHB

126 HBeAg-negative CHB patients treated with IFN and followed for 11 (1-23) years

<u>Multivariate anlysis:</u> HBV DNA levels, log10 IU/mL HR 0.57, 95%CI 0.39 - 0.83, p=0.003; No IFNλ4 + IFNλ4-S70a: HR 5.90, 95%CI 1.70 - 21), p=0.006

Galmozzi E et al, Liver International 2017

Genetic Variation in *FCER1A* Predicts Peg-IFN Alfa-2a-Induced HBsAg Clearance in East Asian Patients With CHB

non-EastAsian

- GWAS study in 1,636 treated with IFN alpha 2a
- In gene-by-gene analyse, one gene, FCER1A (rs7549785), reached genomewide significance (P = 2.65 × 10–8) in East Asian patients for HBsAg loss. FCER1A encodes the alpha subunit of the immunoglobulin E receptor.
- In a post hoc analysis of a homogenous patient subset, the strongest intra-genic association was for rs7712322 (POLR3G, $P = 7.21 \times 10-7$). POLR3G encodes the G subunit of the Polymerase (RNA) III enzyme, which plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses, and acts as nuclear and cytosolic DNA sensor involved in innate immune response.

GWAS study in 1045 IFN treated CHB patients NCOA2 Region on Chr. 8 in Caucasians

Identified an interesting region on chromosome 8 (NCOA2)

- P-value of lead SNP in Caucasians is 1.3x10-6; MAF=0.13
- Not associated in Asians (p=0.557)
- Nuclear hormone receptor involved in activation of cell cycle genes
- NCOA2 is:
 - A modulator of hepatic metabolism (Chopra et al., 2011)
 - Implicated as a tumour suppressor in liver cancer of mice (O'Donnell et al., 2012)
 - Known to be associated with spindle cell rhabdomyosarcoma and an oncogene in prostate cancer (Troutman 2010)
 - Associated with hs-cardiac tropin T-levels (Yu et al., 2013)

Brouwer WP et al, AASLD 2015

Week 12 and 24 stopping rules for HBeAg-positive and -negative patients treated with PegIFNa

EASL 2017 HBV guidelines, J Hepatol 2017

Peg-IFN alfa-2a (40KD) treatment stopping rules in CHB: A systematic review and individual patient data meta-analysis

1,423 patients (765 HBeAg-positive; 658 HBeAg-negative) from 8 studies were included

HBV							
Genotype	Stopping rule	Se	Sp	NPV			
HBeAg-positive patients							
В	HBsAg >20,000 IU/mL	0.96	0.23	0.93			
	HBV DNA >8 log ₁₀ IU/mL	0.94	0.26	0.90			
С	HBsAg >20,000 IU/mL	0.97	0.22	0.96			
	HBV DNA >8 log ₁₀ IU/mL	0.98	0.19	0.98			
HBeAg-negative patients							
D	HBsAg >20,000 IU/mL	0.94	0.16	0.91			
	HBV DNA >6.5 log ₁₀ IU/mL	1.00	0.11	1.00			

Performance characteristics of proposed Week 12 stopping rules

Se, sensitivity; Sp, specificity; NPV, negative predictive value; HBeAg, hepatitis B 'e' antigen; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus.

- These early stopping rules have been externally validated in the same paper
- The performance of Week 24 stopping rules was similar
- For HBeAg negative geno D patients, the PARC rule at week 12 performed as well

Pavlovic V et al, submitted 2018

Peg-IFN for NUC-treated patients

PEG-IFN and NUC – Combination strategies aimed to achieve HBsAg decline or loss

- De-novo combination (naïve pts)
- "Switch" NUC to PEG
- "Add-on" PEG to NUC

De novo PEG-IFN + TDF vs PEG-IFN vs TDF for CHB

7 patients had HBsAg seroreversion on or after Week 48 (4 in TDF+PEG 48 wk, 3 in TDF+PEG 16 wk \rightarrow TDF 32 wk)

• 5/7 had ≤1 week of therapy after HBsAg loss

Marcellin P et al, Gastroenterology 2016

"Switch to" PEG long-term ETV treated pts Results at week 48* - mITT

	PegIFN alfa2a (n=94)	ETV (n=98)	P value	
HBeAg loss	16 (38%)	16 (33%)	NS	
HBeAg seroconversion	14 (15%)	6 (6%)	0.046	
HBsAg <100 IU/ml	22 (27%)	4 (4.4%)	<0.0001	
HBsAg <10 IU/ml	13 (16%)	0	<0.0001	
HBsAg loss	8 (8.5%)	0	<0.01	
HBsAg seroconversion	4 (4.3%)	0	NS	
HBV DNA <1000 cp/mL	59 (72%)	90 (98%)	<0.0001	
ALT normal	48 (58%)	84 (94%)	<0.0001	

*End of treatment for PEG

Ning Q, et al, J Hepatol 2014

'e+,

"Switch to" PEG long-term ETV treated pts Results at week 48* - mITT

	PegIFN alfa2a (n=94)	ETV (n=98)	P value	
HBeAg loss	16 (38%)	16 (33%)	NS	
HBeAg seroconversion	14 (15%)	6 (6%)	0.046	
HBsAg <100 IU/ml	22 (27%)	4 (4.4%)	<0.0001	
HBsAg <10 IU/ml	13 (16%)	0	<0.0001	
HBsAg loss	8 (8.5%)	0	<0.01	
HBsAg seroconversion	4 (4.3%)	0	NS	
HBV DNA <1000 cp/mL	59 (72%)	90 (98%)	<0.0001	
ALT normal	48 (58%)	84 (94%)	<0.0001	

*End of treatment for PEG

Ning Q, et al, J Hepatol 2014

The New Switch study "Switch to" PEG-IFN for NUC treated HBeAg pos pts Serological response rates at week 48

Baseline HBsAg <1,500 IU + wk-12 HBsAg <200 IU/ml = PPV 51%

Hong R et al. EASL 2015

"Switch to" Peg-IFN long-term NUC CHB patients The Japanese Red Cross Hospital Liver Study Group

49 NUC patients were switched to 48-week PEG-IFN vs 147 NUC patients

HBsAg <100 IU/mL 35% vs 15%, p=0.002 HBsAg loss: 4% vs 0%, p=0.01

- HBsAg reduction at week 48 was 0.81±1.1 log IU/mL in IFN group, and 0.11±0.3 log IU/mL, in the NUC group (P < .001).
- Treatment response, defined as HBsAg reduction ≥1.0 logIU/ml, was achieved in 29% and 2% of the IFN group and NUC group (*P* < .001).
- In HBeAg pos pts, HBeAg seroconversion was higher in the sequential group (44% vs 8%, P < .001).
- In HBeAg-negative patients, only patients switched to IFN achieved HBsAg loss.
- No patient needed to restart NA because of HBV DNA increase and ALT flares.
- HBsAg decline at week 12 of 0.2 log IU/mL was the best predictor of response (AUROC 0.96, PPV 72%, NPV 97%..

"Add-on" PEG-IFN alfa-2b in HBeAg pos NUC treated pts: A Randomized, Controlled Trial from China (PEGON)

77 HBeAg positive patients with HBV DNA <2,000 IU/ml on ETV/TDF randomized to 48week add-on Peg-IFN (n = 39) or continued NA monotherapy (n = 38)

■・ NA monotherapy

"Add-on" PEG-IFN in HBeAg neg NUC responders On-treatment changes in HBsAg levels

. ** p=0.1521

*

Bourliere M. et al, Lancet GH 2017

"Add-on" Peg-IFN in HBeAg neg, geno D, NUC responders The HERMES study

(70 patients - Week 48 analysis)

Undetectable HBV DNA for 3.2 years (1.1-8) before add-on PEG

Lampertico P. et al, submitted 2018

Standard and New markers for HBV

Standard markers:

- qHBsAg
- HBeAg/anti-HBe
- HBV-DNA levels
- Anti-HBc

New markers:*

- ultra sens qHBsAg
- HBeAg levels
- ultra sens HBV-DNA
- Anti-HBc levels
- HBcrAg
- HBV-RNA levels
- Different HBsAg proteins

Summary and Conclusions

- Peg-IFN is a standard of care therapy for HBV
- 20-30% of naïve patients benefit from this strategy
- The long-term outcome of these responders is very good
- Baseline prediction scores and week 12 stopping rules have been developed (host genetics ?)
- Peg-IFN could also be used to accelerate HBsAg kinetics in NUC treated patients (add-on, switch to.....)
- New HBV biomarkers could be useful in the IFN setting