Chronic hepatitis B: Long term benefit of treatment Prof Jean-Pierre Bronowicki

University Hospital Nancy INSERM U954

Disclosures

Adviser, speaker for:

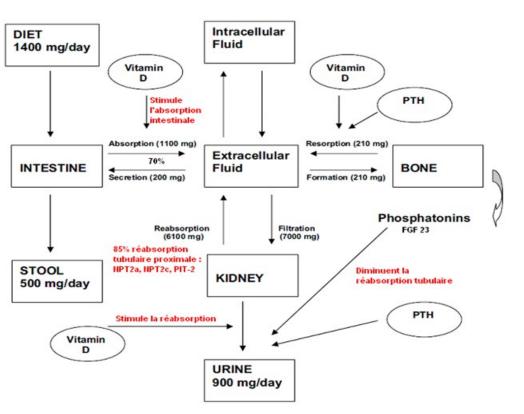
Abbvie, BMS, Gilead, Janssen, MSD, Bayer,

Age / Gender	51-years / male
HBV diagnosis	2006
Route of transmission	No clear risk factor
ALT	111 IU/mL (NV<40 IU/mL)
HBeAg	Negative
HBV DNA	2,000,000 copies/ml (≈350,000 IU/mL)
Liver biopsy	Knodell score 12, fibrosis 4 (Metavir A2F4)
Platelets (G/L)	155
Gastroscopy	No EV
US	No HCC
Liver stiffness (kPa)	17.8 kPa
Comorbidity	No - BMI 25
eGFR (mL/min)	100
Serum Phosphate	0.58 mmol/L (0.81-1.45)

EASL recommandations 2017

At baseline, ...kidney function tests (eGFR and serum phosphate levels) should be performed

Patients at risk of renal disease treated with any NA and all patients regardless of renal risk treated with TDF should undergo periodical renal monitoring including eGRF and serum The frequency of renal monitoring can be every 3 months during the first year and every 6 months thereafter, if no deterioration


Renal abnormalities in 200 treatment naive patients with chronic HBV infection Proteinuria (dipstick), n=155 Abnormal urinary sediment (dipstick), n=155: Haematuria 20.6% (32)

Haematuria Glycosuria Uninfectious leukocyturia	20.6% (32) 3.9% (6) 9% (14)
Hypophosphatemia, n=193 Mild (0.6-0.8 mmol/l) Moderate (0.3-0.6 mmol/L)	10.9% (21) 10.5% (20) 0.5% (1)
Vitamin D level, n=200 Hypovitaminosis (<20 mg/L) Vitaminin D deficiency (<5 mg/L)	64.5% (129) 11.5% (23)
KD patients according to KDOQI/KDIGO classification, n=113 Stage 1: GFR≥90 + kidney damage* Stage 2: 60-89 (mild decrease in GFR) + kidney damage* Stage 3: 30-59 (moderate decrease in GFR Stage 4-5: 15-29 (severe decrease in GFR) and <15 (dialysis) All stages	36.3% (41) 24.8% (28) 3.5% (4) 0

* Proteinuria (>1+) and/or haematuria (>1+) and/or leukocyturia (<1+ without nitrite)

Amet S et al. Logar 61/2073 \$5:148-55

Hypophosphatemia

- Blood : P, Ca, Creatinin, 1-25-OH-vitD, PTH
- Urine : P, Ca, Creatinin
- Phosphaturia:
 - < 5mmol/24h : extra-renal
 - > 5mmol/24h : renal
- Tubular PO4 reabsorption
 - High: extra-renal
 - Low: proximal tubulopathy?

Gaasbeek-Hypophosphatemia: an update of its etiology and treatment AJM

2005

Hypophosphatemia confirmed, Ca N, PTH N, 25-OH-vitD: 5 mg/L, phosphaturia

< 5mmol/24h, TmP/GFR high

 \rightarrow vitD supplementation \rightarrow P normalization

March 2006: patient started tenofovir in a phase 3 study comparing TDF vs ADF.

Marcellin P et al. N Engl J Med 2008.359:2442-5

What is the risk of HCC under treatment at 5 years in this patient ? 1) Low 2) Intermediate 3) High

PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy

George Papatheodoridis^{1,2,*}, George Dalekos³, Vana Sypsa⁴, Cihan Yurdaydin⁵, Maria Buti⁶, John Goulis⁷, Jose Luis Calleja⁸, Heng Chi⁹, Spilios Manolakopoulos², Giampaolo Mangia¹⁰, Nikolaos Gatselis³, Onur Keskin⁵, Savvoula Savvidou⁷, Juan de la Revilla⁸, Bettina E. Hansen⁹, Ioannis Vlachogiannakos¹, Kostantinos Galanis³, Ramazan Idilman⁵, Massimo Colombo¹⁰, Rafael Esteban⁶, Harry L.A. Janssen^{9,11}, Pietro Lampertico¹⁰

Age (yr)		Gende r		Platelets (G/L)	
16-29	0	Femal e	0	≥200	0
30-39	2	Male	6	100-199	6
40-49	4			<100	9
50-59	6				
60-69	8			- 10	
≥70	1	Page-B s	SCOI	e – 10	

Papatheodoridis G et al. J Hepatol 2016.6:800-

March 2006: patient started TDF in a phase 3 study comparing TDF vs ADF.

	2006 (W24)	2007 (year 1)
ALT (IU/L)	66	55
HBV DNA (copies/mL)	20,000	<400
GFR (mL/min)	>90	>90
Phosphate (mmol/L)	Normal	Normal
Platelets	177	170
LS (kPa)	-	9.1
US	Normal	Normal

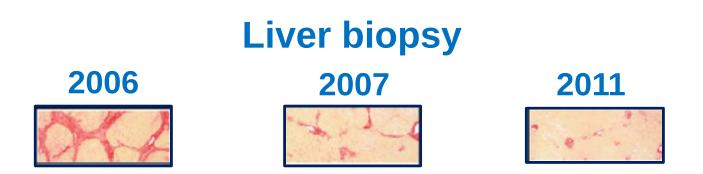
How would you interpret the decrease of liver stiffness from 17.8 to 9.1?

1) Regression of fibrosis

- 2) Decrease of inflammation
- 3) Probably both

Liver biopsy

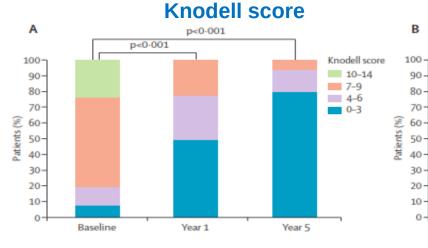
Knodell NI score: 12 Ishak fibrosis score: 6 Knodell NI score: 7 Ishak fibrosis score: 3

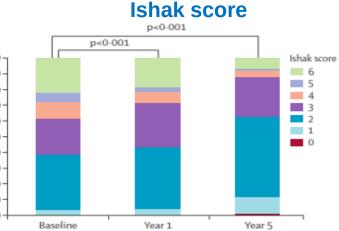


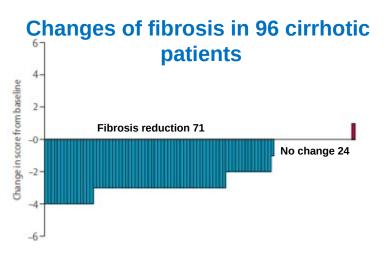
Would you stop HCC screening ? 1) No 2) Yes

Patient treated with TDF and followed in a open label study with a biopsy at week 240

	2008 (year2)	2009 (year 3)	2010 (year 4)	2011 (year 5)
ALT (IU/L)	41	39	30	28
HBV DNA (IU/mL)	<29	<29	<29	<29
GFR (mL/min)	>90	>90	>90	>90
Phosphat e (mmol/L)	Normal	Normal	Normal	Normal
Platelets (G/L)	190	199	191	190
LS (kPa)	8	7.2	6.4	5.7
US	Normal	Normal	Normal	Normal

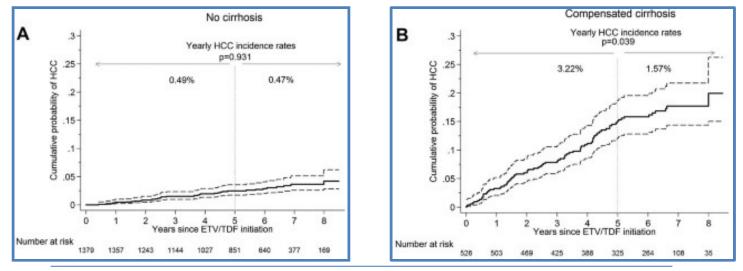





Knodell NI score: 12 Knodell NI score: 6 Knodell NI score: 2 Ishak fibrosis score: 6 Shak fibrosis score: 3 Shak fibrosis score: 2

Regression of cirrhosis during treatment with TDF

Histology results over 5-year treatment phase


Fibrosis at yr-5	No cirrhosis (n=71)	Cirrhos is (n=25)	
BMI (D1)	25.7	29.0	<0.000 7
Diabetes (D1)	1%	24%	0.001
N ALT (yr5)	87%	58%	0.007
Knodell 0-3 (yr5)	83%	52%	0.007

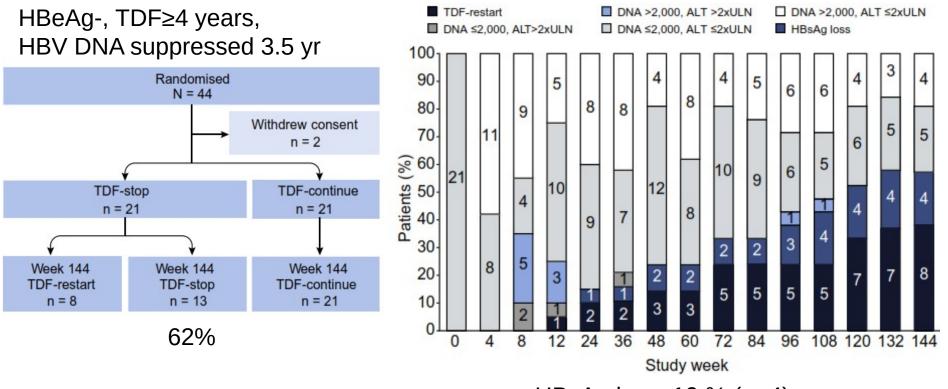
BMI ,OR 7.4, p=0.0044

Would you stop HCC screening ? 1) No 2) Yes

Risk of HCC after the first 5 years of ETV or TDF in caucasian

Baseline

Year 5


		HR (95% CI)	р	HR (95% CI)	р
	Age (per yr)	1.06 (1.01- 1.11)	0.03 2	1.06 (1.00- 1.13)	0.04 7
	Platelets	0.99 (0.98- 1.00)	0.02 1	0.98 (0.97- 0.99)	0.00 4
	HBV DNA	0.79 (0.60- 1.03)	0.07 8		
*M	v Cirrhosig only cirrhos	is		r₅ patheodoridis G et al	. Hepato

Papatheodoridis G et al. Hepatology 2017.66:1444-5

Would you stop TDF? 1) No 2) Yes

Long term response after stopping TDF in non cirrhotic HBeAg- patients

HBsAg loss: 19 % (n=4) HBV DNA ≤2000 IU/mL and ALT <2N: 5

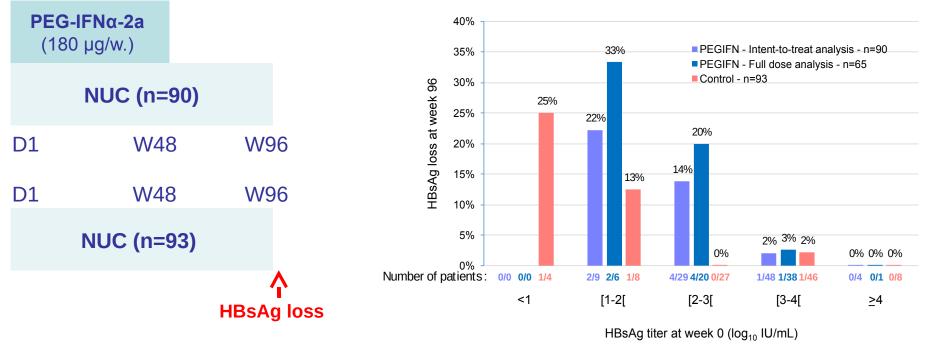
Berg T et al. J Hepatol 2017.67:918-24

Patient still treated with TDF and screened for HCC by US

Patient case

	2012 (year 6)	2013 (year 7)	2014 (year 8)	2015 (year 9)	2016 (year 10)
ALT (IU/L)	30	35	36	30	27
HBV DNA (IU/mL)	<29	<29	<29	<29	<29
GFR (mL/min)	88	85	83	80	81
HBsAg (IU/mL)	900	810	660	600	550
Log10 IU/mL	2.95	2.9	2.8	2.78	2.74
Phosphate (mmol/L)	Normal	Normal	Normal	Normal	Normal
Platelets (G/L)	190	199	188	190	192
LS (kPa)	5.5	5.8	5.9	6.1	6.2
US	Normal	Normal	Normal	Normal	Normal

The patient ask you if it is possible to accelerate the HBs clearance ? 1) No 2) May be


HBsAg loss after addition of 48 weeks of PEG-IFN to NUC in HBeAg negative

patients

Pegan study

HBeAg - , HBV DNA -, NUC \geq 1 yr

Loss of HBsAg at week 96 according to treatment arm stratified by HBsAg titer (in log10 IU/mL) at week 0

HBsAg loss : 6/38 (16%) if HBsAg< 3log10

Bourlière M et al. Lancet Lancet Gastroenterol Hepatol. 2017;2:177-88

Patient still HBsAg+ and treated with TDF

(12 years under treatment, cost of TDF 42000 €)

Conclusions

- Renal abnormalities are frequent in HBV+ patients → Renal function tests should be performed before starting NA
- In absence of cirrhosis, HCC surveillance is probably not mandatory if PAGE-B < 9
- Cirrhosis may reverse under NA
- The optimal strategies (HCC surveillance, NA cessation) in patients with cirrhosis reversion remain to be defined