Delta hepatitis: How to manage and optimize therapy?

Dominique ROULOT Unité d'Hépatologie, Hôpital Avicenne

Delta hepatitis treatment in 2018

- Currently, $Peg-IFN\alpha$ 180 $\mu g/wk$ is the only effective treatment for inhibiting HDV replication
- With disappointing outcome 6 months after the end of treatment :
 - HDV RNA is undetectable in only 25-30%,
 - HBsAg loss in less than 10%
- With missing informations:
 - appropriate predictive response factors
 - criteria for treatment interruption

Mr. K, 30 yrs old

- Born in Mali, lives in France since 2015
 No previous medical or surgical history
 No alcohol or tobacco consumption
 No comorbidity, normal BMI of 24 kg/m2
- Admission for fever and vesicular cutaneous eruption caused by varicella infection. No other clinical anomalies

Laboratory tests:

ALT 3xN, AST 2xN; platelet count 135 000/mm3; PT 60% No HIV or HCV antibodies HBsAg positive (3.2 log IU/ml); HBV genotype E, HBV DNA 4.4 log IU/ml Anti-HDV antibodies including IgM; HDV genotype 5; HDV RNA 8.6 log IU/ml

• Fibroscan 14kPa, Fibrotest score 0.76

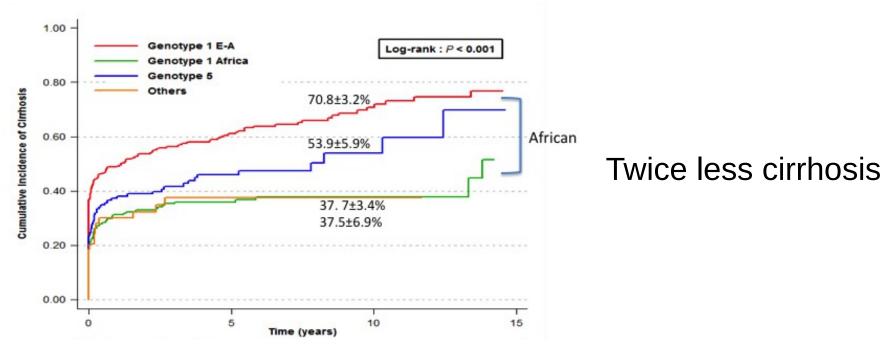
In this African patient with HDV infection...

Which are the baseline predictive factors of response to treatment?

- 1. Age
- 2. Ethnic origin
- 3. HDV genotype
- 4. HDV RNA levels
- 5. HBsAg levels
- 6. Fibrosis score

Better prognosis and response in African HDV co-infected patients

	African	Non-African	<i>p</i> -value
Number	74	39	
Male (%)	54.1	46.2	0.437
Cirrhosis (%)	17.7	41.0	0.012


Lower incidence of cirrhosis and decompensation

	Response *	Non-Response	<i>p</i> -value
Number	11	19	
Cirrhosis (%)	36.4	73.7	0.063
Origin (n)	10 African 1 non-African	6 African 11 non-African	0.006
Peg-IFN-Tx (weeks)	48.0	48.0	1

^{*}HDV RNA undetectable 24wks post-treatment

 Better response to treatment compared to patients of non-African origin

Less cirrhosis and better response to treatment in African HDV co-infected patients

	Response	Non-Response	P-value
Number	166	158	
Cirrhosis (%)	38.5	46.8	NS
Origin n (%)	107 African (57.5) 59 non- Afr. (42.7)	79 African 79 non- African	p < 0.01

Baseline predictors of response to treatment in HDV-coinfected patients

1. Age No impact

2. Ethnic origin: Superior response in African patients

3. HDV genotype: Possibly

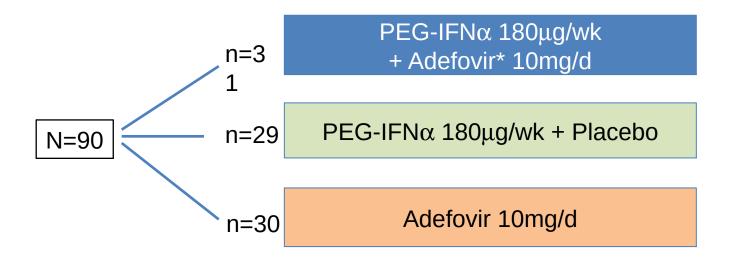
4. HDV RNA levels: Better if low RNA

5. HBsAg levels: Better if low HBsAg

6. Fibrosis score: Paradoxical better response in cirrhotic

patients

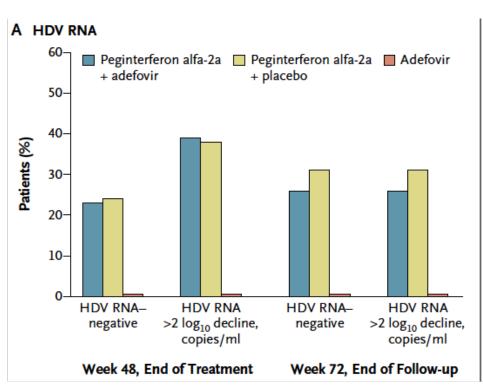
Wedemeyer H et al. J Hepatol 2014;60:S2-S3 Keskin O et al. Clin Gastroenterol Hepatol 2015

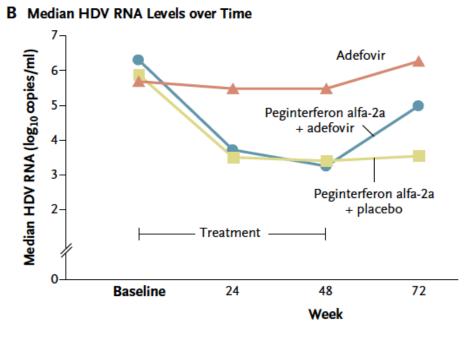

Niro GA et al. Aliment Pharmacol Ther 2016

Therapeutic options for this cirrhotic HDV co-infected patient

Among the following, what treatment would you choose?

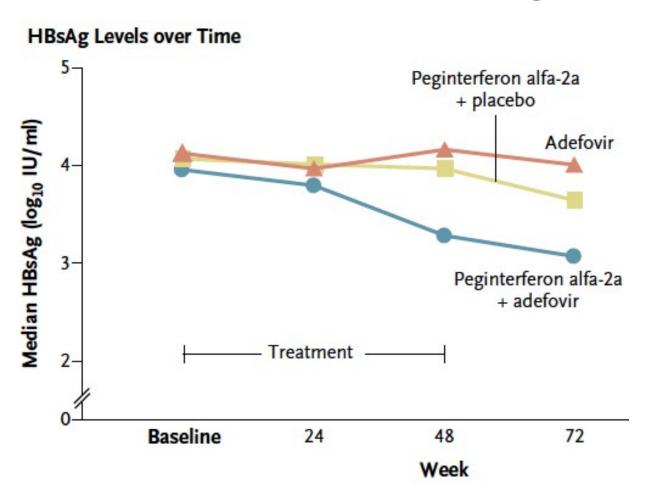
- 1. Peg-IFN α 180 μ g/wk for 48 weeks
- 2. Peg-IFN α 180 μ g/wk for 96 weeks
- 3. Peg-IFN α 180 μ g/wk plus a nucleos(t)ide analogue for 48 wks
- 4. Peg-IFN α 180 µg/wk plus a nucleos(t)ide analogue for 96 wks


Peg-IFN α plus Adefovir vs either drug alone (the HIDIT-1 study)

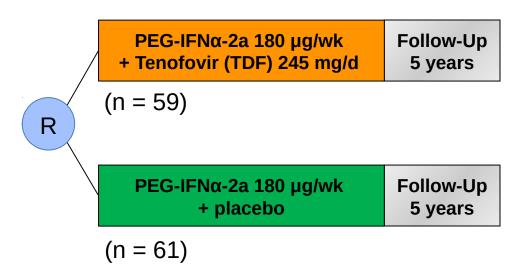


Treatment duration: 48 weeks Follow-up: 5 years

(* To simultaneously target HBV)


HIDIT-1 results: HDV RNA

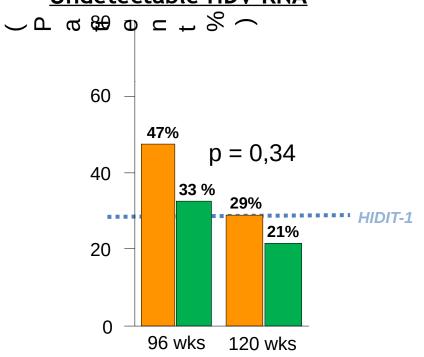
- \sim **25%** of RNA HDV clearance whether or not Adefovir is present
- Late HDV RNA clearance 24wk after the end of Peg-IFN α treatment
- No effect of Adefovir on HDV RNA levels


HIDIT-1 results: HBsAg

Larger decrease of HBsAg levels is observed for the Peg-IFN α and Adefovir combination compared to Peg-IFN α or Adefovir alone.

Peg-IFNα + Tenofovir (TDF) compared to Peg-IFNα alone for 96 weeks (HIDIT-2 study)

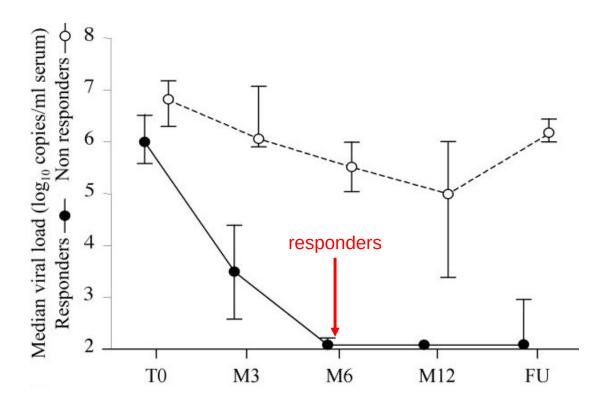
 120 HDV co-infected patients (45% with cirrhosis) randomized in 2 arms



A more potent antiviral drug and a longer duration (96 wks vs 48 wks)

HIDIT-2 main conclusions

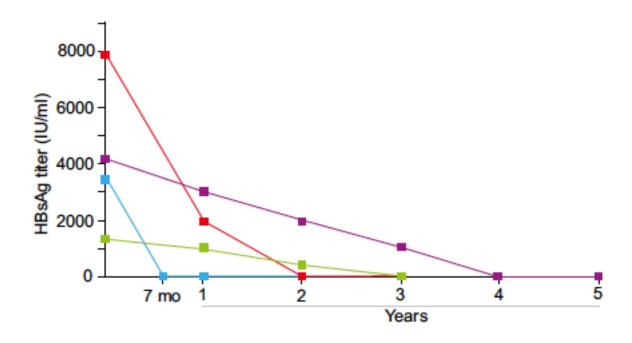
Comparison of HDV-RNA at 96 and 120 weeks


<u>Undetectable HDV-RNA</u>

- Slightly better than HIDIT-1 (at 48 wk
- The combination had no superior effect
- More than 1/3 of the patients relapsed
 6 months after the end of treatment
- A better response was observed in patients with cirrhosis.

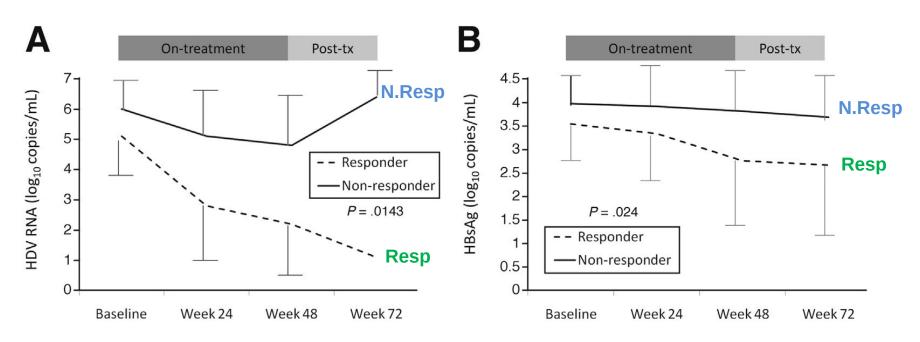
■ PEG-IFN + TDF ■ PEG-IFN + placebo

1. Evolution of HDV RNA levels


In patients treated for 48 weeks:

 Levels of HDV RNA was the best predictive factor for virologic response 6 months after treatment

> Castelnau C et al. Hepatology 2006 Keskin O et al. Clin Gastroenterol Hepatol 2015


Predictive factors during treatment for sustained response (2)

2. Evolution of HBsAg levels (n=4)

- The loss of HBs Ag was regarded as the optimal endpoint.
- Peg-IFN α was discontinued when HBsAg levels were undetectable
- HBsAg values remained stable 12 months after the end of the treatment

Combination of HDV RNA and HBsAg decrease is the best predictor of response

- Significant difference in HDV RNA and HBsAg levels between responders and non-responders
- HBsAg <1000 IU at 6 months (M6) discriminates responders from nonresponders
- Best predictor of response: combination of a reduction of HBsAg (0.105 log) and a reduction of HDV RNA (1.6log) regimbase line to Mastroenterol Hepatol 2015

 Niro GA et al. Aliment Pharmacol Ther 2016

 Guedj J et al. Hepatology 2014

Current therapeutic recommendations

Starting treatment:

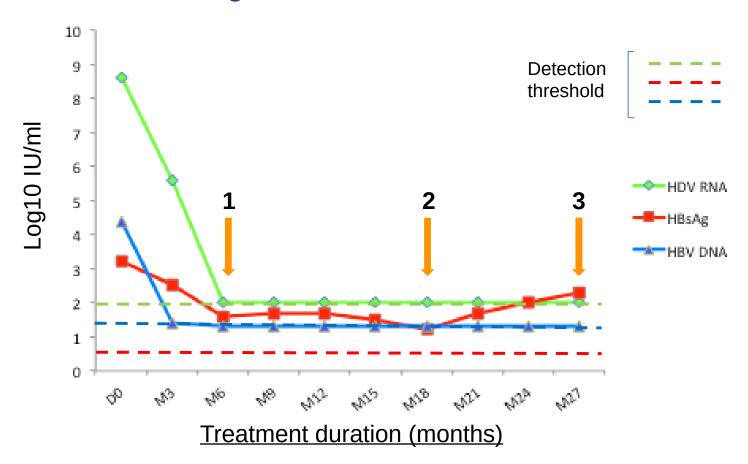
Peg IFN α (180 µg/wk) for at least 48 weeks Associate an analog only if active HBV DNA replication

Monitoring every 3 months:

ALT, HDV RNA, HBV DNA, HBsAg

Discontinuation after 48 weeks if no response :

No decrease (or decrease < 2log) of HDV RNA No decrease (or decrease < 0.5 log) of HBsAg


Continuation after 48 weeks:

Maintain as long as HDV RNA and/or HBsAg decrease Optimal endpoint: loss of HBsAg (rarely achieved!)

Therapeutic options for our cirrhotic HDV co-infected patient, Mr.K

- 1. Peg-IFN α 180 μ g/wk for 48 weeks
- 2. Peg-IFN α 180 μ g/wk for 96 weeks
- 3. Peg-IFN α 180 µg/wk plus a nucleos(t)ide analogue for 48 wks
- 4. Peg-IFNα 180 μg/wk plus a nucleos(t)ide analoguenqbvir 96 wks

Evolution of Mr K. status under treatment with Peg-IFN α + Tenofovir*

- 1. Treatment continued because persistence AND slow decrease of HBsAg
- 2. Interruption was motivated by the occurrence of pulmonary tuberculosis
- 3. HDV RNA is still undetectable 9 months after the end of treatment