

New Therapies in HCC

Bruno Sangro Clínica Universidad de Navarra. IdISNA. CIBERehd. Pamplona, Spain

PHC 2018 - www.aphc.info

EASL-EORTC Guidelines

Systemic Therapy of HCC

TREATMENT OF HEPATOCELLULAR CARCINOMA WITH ADRIAMYCIN

Preliminary Communication

Charles L. M. Olweny, MMed,* Tom Toya, MD[†] Edward Katongole-Mbidde, MB, ChB,[‡] Josua Mugerwa, MD,[§] Sebastian K. Kyalwazi, FRCS(Ed),[#] and Herman Cohen, PhD**

In a Phase II clinical trial, 14 patients with histologically proven primary hepatocellular carcinoma were treated with adriamycin administered intravenously at a dose of 75 mg/m² every 3 weeks. All 11 evaluable patients responded with 3 exhibiting complete tumor regression after two, three, and five courses of adriamycin respectively. The remission durations for these 3 were 3, 6, and 7 months, and their survivals were 8, 9, and 13 months, respectively. The median survival of the evaluable patients is 8 months (range 1–13 months). The side effects encountered included myelosuppression, anorexia, nausea, vomiting, and alopecia. Adriamycin seems to be an effective agent in hepatocellular carcinoma. Further trials are underway to test its true efficacy both singly and in combination with other drugs in the management of this tumor.

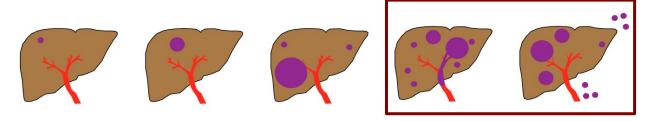
Cancer 36:1250-1257, 1975.

Table 1 | Major recurrent molecular aberrations observed in advanced HCC

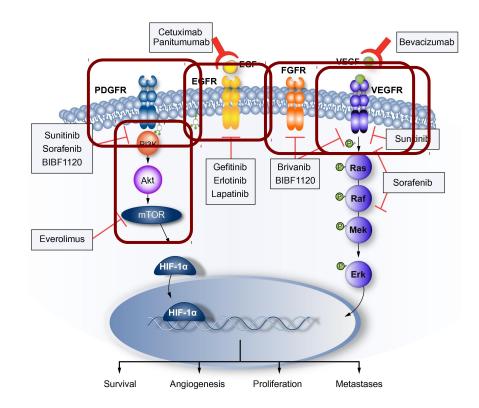
Pathway(s)	Gene(s)	Alteration	Frequency in HCC
Telomere	TERT	Promoter mutation	54-60%
maintenance		Amplification	5-6%
Cell cycle	TP53	Mutation or deletion	12-48%
control	RB1	Mutation or deletion	3-8%
	CCND1	Amplification	7%
	CDKN2A	Mutation or deletion	2-12%
WNT–β- catenin signalling	CTNNB1	Mutation	11-37%
	AXIN1	Mutation or deletion	5-15%
Oxidative	NFE2L2	Mutation	3-6%
stress	KEAD1	Mutation	2 90/

no clear oncogenic addiction loops reporting response to targeted therapies have been described

Angiogenesis VEGFA


Amplification

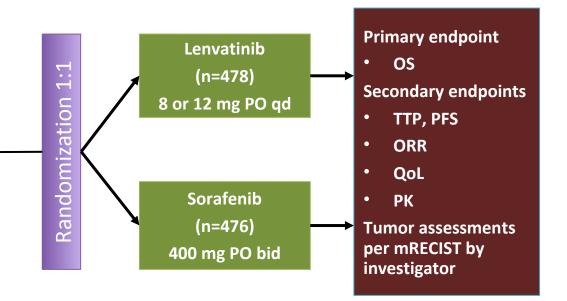
3-7%


Olweny CLM, et al. Cancer 1975; 36: 1250-1257.

Sorafenib in HCC

- Consistent effect in the advanced stage (HR: 0,69)
 - SHARP and AP trials; 828 patients randomised.
- No significant effect in combination with TACE in the intermediate stage
 - SPACE and TACE-2 trials; 601 patients randomised
- No significant effect as an adjuvant therapy post-resection or ablation in the early stages
 - STORM trial; 1,114 patients randomised

Targeted agents beyond Sorafenib



- Sunitinib: p 3 Trial halted for futility
- Brivanib: failed in 3 settings
 - 2L vs. Placebo
 - First line vs. Sorafenib
 - Combination with TACE vs. Placebo
- Erlotinib: no benefit in Sor combo
- Everolimus: no benefit in 2 settings
 - 2L vs. Placebo
 - 1L in combination with Sorafenib

Lenvatinib: the REFLECT Trial

Patients with Unresectable HCC (n=954)

- Unresectable HCC with no prior systemic therapy for advanced or metastatic disease
- BCLC Stage B or C
- Child-Pugh A and ECOG 0-1
- Patients with >50% involvement, bile duct invasion, or main PVT invasion were excluded

- Open-label design
- The primary endpoint (OS) was first tested for noninferiority then for superiority.

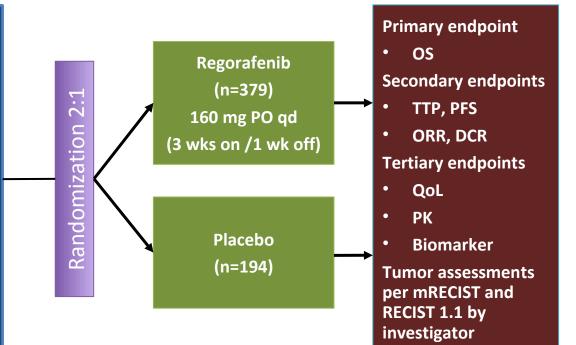
Lenvatinib: the REFLECT Trial

Characteristic	Lenvatinib	Sorafenib
Mean age (y)	61.3	61.2
Male Sex, %	85	84
A-P Region, %	67	67
Hepatitis B, %	53	48
MVI or EHD, %	69	71
ECOG 0, %	64	63
Child A, %	99	99
BCLC C, %	78	81

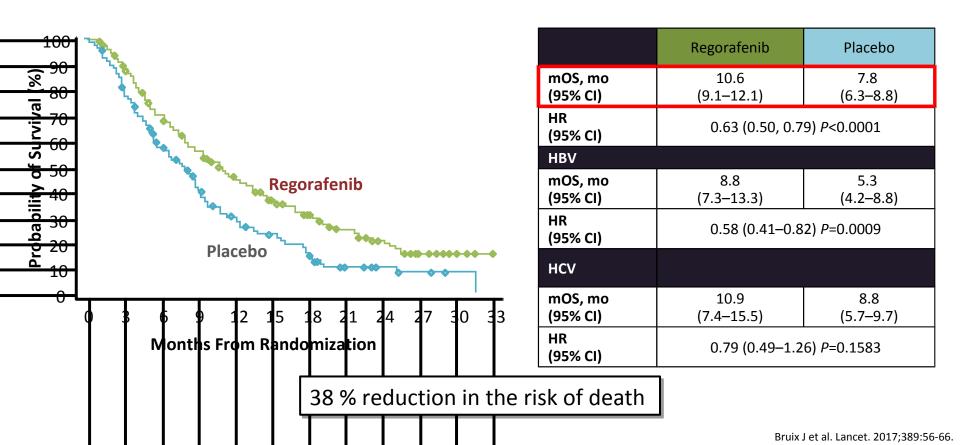
Overall Survival, median (95%CI)

- Lenvatinib: 13.6 (12.1-14.9)
- Sorafenib: 12.3 (10.4-13.9)
- HR (95%CI): 0.92 (0.79-1.06)

• Higher TRAE G≥3 and SAEs

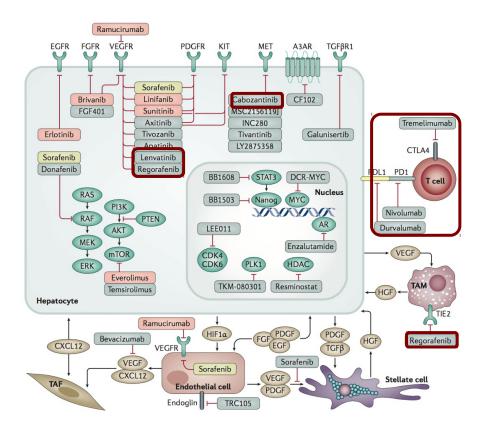

Phase 3 Trials Comparing SIRT and Sorafenib

Trial	SIRVENIB (Asia-Pacific)	SARAH (France)	
Target Population	BCLC B or BCLC C without EHD, ECOG 0 – 1, Child-Pugh A or B7		
	Without > 2 prior intraarterial therapies	Failed after 2 sessions of TACE	
Patients assessed	489 (360 randomized 1:1)	496 (467 randomized 1:1)	
Population treated	HBV was the most frequent etiology Most patients were BCLC-B	Alcohol was the most frequent etiology 34-32% had main trunk PVI	
Not receiving assigned Tx	28% in SIRT arm, 9% in Sorafenib arm	26% in SIRT arm, 7% in Sorafenib arm	
Primary Endpoint (MOS)	8.8 mo (SIRT) vs. 10 mo (SOR)	8.0 mo (SIRT) vs. 9.9 mo (SOR)	
Relevant secondary endpoints	Response Rate (PP): 23.1% (SIRT)vs. 1.9% (SOR), p<0.001.	Response Rate (PP): 19% (SIRT) vs. 11.6% (SOR), p=0.042.	
	Patients with ≥1 TRAE grade ≥3: 13.1% (SIRT) vs 37.7% (SOR), p< 0.001	Patients with \geq 1 TRAE grade \geq 3: 40% (SIRT) vs 63% (SOR), p< 0.001	


Regorafenib: the RESORCE trial

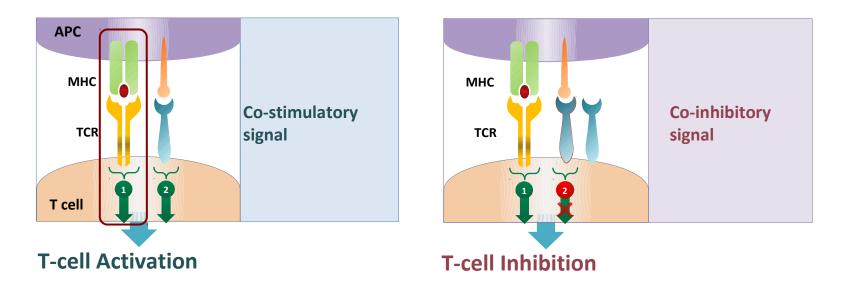
Patients with Unresectable HCC (n=573)

- Advanced HCC with <u>radiological</u> <u>progression</u> after sorafenib
- BCLC Stage B or C
- Child-Pugh A and ECOG 0-1
- Tolerability to sorafenib treatment (on SOR ≥ 20 days at ≥ 400 mg daily within the last 28 days prior to withdrawal)
- Asian patients ≤40%


Regorafenib: the RESORCE trial

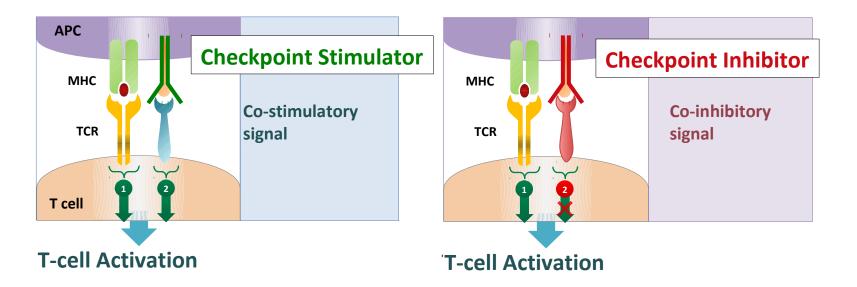
Phase 3 Trials of Targeted Therapy for Advanced HCC

Advanced-Stage HCC				
1st Line	2nd Line			
Lenvatinib vs Sorafenib	Regorafenib vs PBO			
	Cabozantinib vs PBO			
	Ramucirumab vs PBO (AFP-H)			
SIRT vs Sorafenib (Asian patients)	Tivantinib vs PBO (MET-H; Asian patients)			
SIRT vs Sorafenib (French patients)	Tivantinib vs PBO (MET-H; Western patients)			
Efficacy data recently presentedBiomarker selectionFailed to meet 1° endpoint				

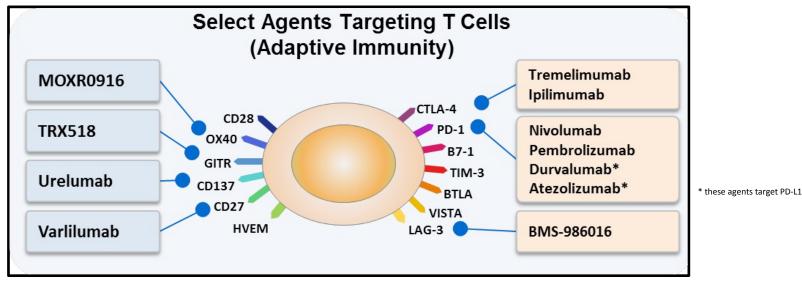

Targeted Therapies for HCC

Llovet JM, et al. Nat Rev Dis Primers. 2016 Apr 14;2:16018. doi: 10.1038/nrdp.2016.18.

Activation and Inhibition of T Cells


T-cell response is regulated by a balance between co-stimulatory and co-inhibitory signals, also referred to as "checkpoint" pathways1,2

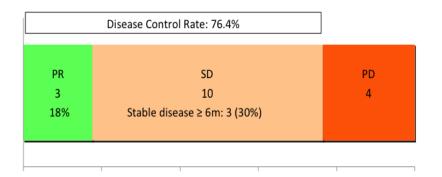
APC, antigen-presenting cell; MHC, major histocompatibility complex; TCR, T-cell receptor. 1. Pardoll DM. *Nat Rev Cancer*. 2012;12(4):252-264. 2. Weber J. *Semin Oncol*. 2010;37(5):430-439.

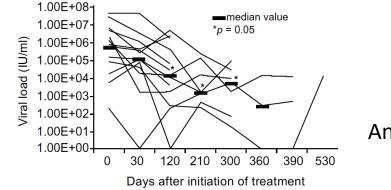

Activation and Inhibition of T Cells

T-cell response is regulated by a balance between co-stimulatory and co-inhibitory signals, also referred to as "checkpoint" pathways1,2

APC, antigen-presenting cell; MHC, major histocompatibility complex; TCR, T-cell receptor. 1. Pardoll DM. Nat Rev Cancer. 2012;12(4):252-264. 2. Weber J. Semin Oncol. 2010;37(5):430-439.

Immune Checkpoint Inhibition

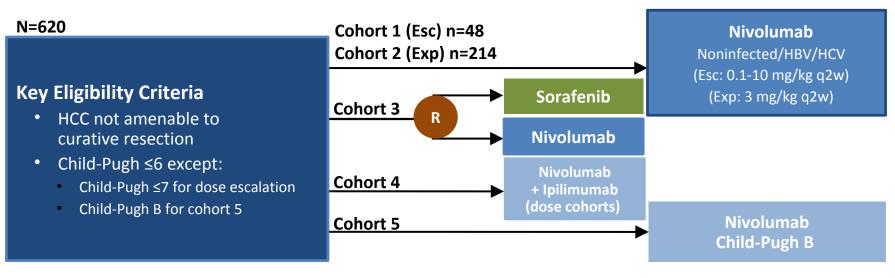

Stimulating Agents

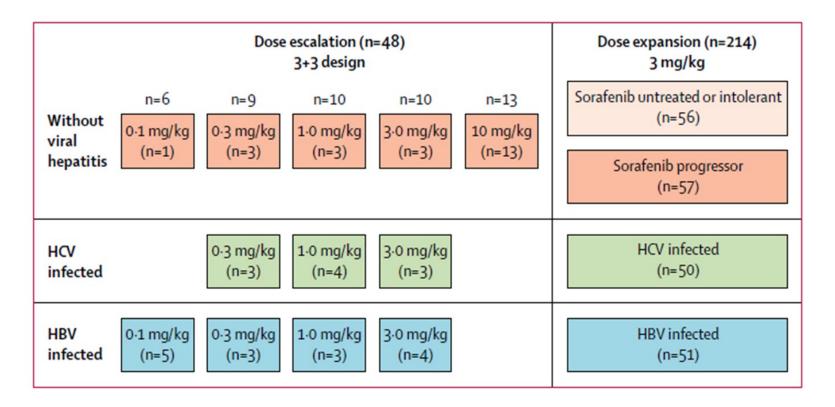

Blocking Agents

Checkpoint inhibitors have had a major impact on the treatment of multiple cancer types, leading to approvals in 9 cancer types: Melanoma, NSCLC, Renal cell carcinoma, Merkel cell carcinoma, Bladder cancer, SCCHN, Hodgkin's lymphoma, MSI-high tumors, **Hepatocellular carcinoma**

Tremelimumab in HCC

- IIT, multicentric, single arm phase 2 trial
- Advanced HCC + chronic HCV infection
- Main endpoint: tumor response
- Sample size: 20 patients
- Tremelimumab: 15 mg/kg IV q 90 days

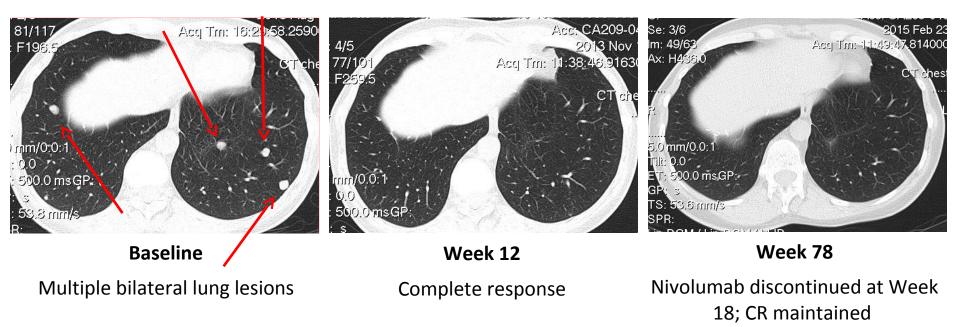



Antiviral effect not related not antitumor activity

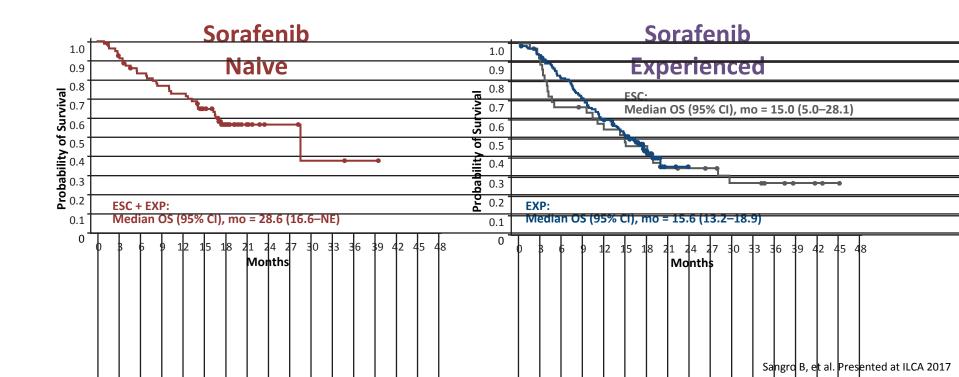
Sangro B, et al. J Hepatol 2013, 59:81

Nivolumab in HCC - CHECKMATE 040 Trial

- Primary Endpoints (Cohorts 1&2): Safety and tolerability, ORR
- Location: Multinational
- Status: Ongoing, recruiting



Best Overall Response by Blinded Independent Central Review


Patients, n (%)	Sorafenib Naive ESC + EXP n = 80a	Sorafenib Experienced ESC n = 37a	Sorafenib Experienced EXP n = 145
Objective response using RECIST v1.1	16 (20)	7 (19)	21 (14)
Complete response	1 (1)	1 (3)	2 (1)
Partial response	15 (19)	6 (16)	19 (13)
Stable disease	25 (31)	12 (32)	60 (41)
Progressive disease	32 (40)	13 (35)	56 (39)
Not evaluable	5 (6)	4 (11)	8 (6)

a Two sorafenib-naive patients and 1 sorafenib-experienced (ESC) patient had a best overall response reported as non-CR/non-PD by BICR.

- Disease control rates were 54% in SOR-naive patients and 55% in all SOR-experienced patients
- Median duration of response: 17 months. Median survival not reached among responders

>23 months after last dose

Survival of Advanced HCC in 2L p3 Trials

MOS

8.2

7.3

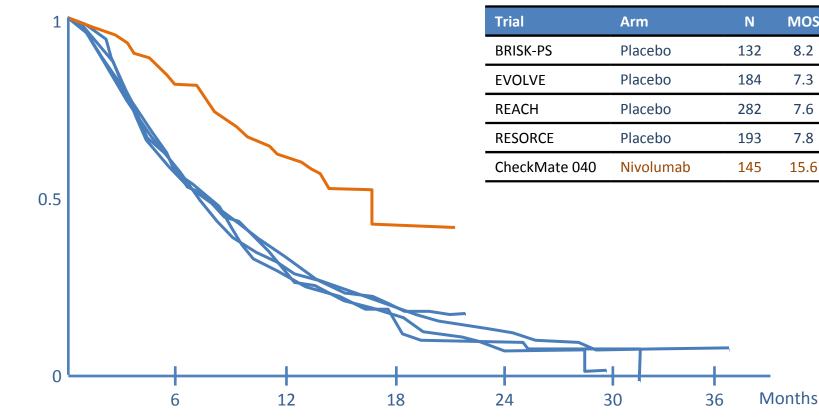
7.6

7.8

15.6

95%CI

NR


6.3-8.7

6.0-9.3

6.3-8.8

13.2-18.8

Probability of survival

Special Patterns of Response to I-O Agents

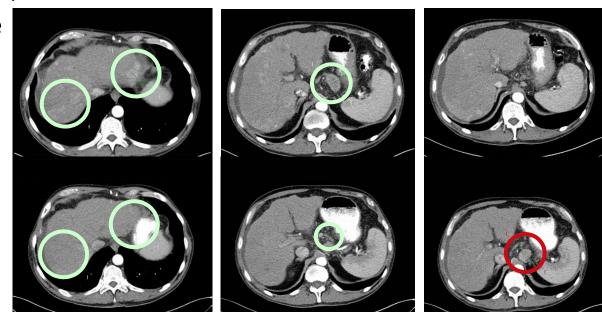
- Sustained stabilization
- Response after initial progression

Baseline

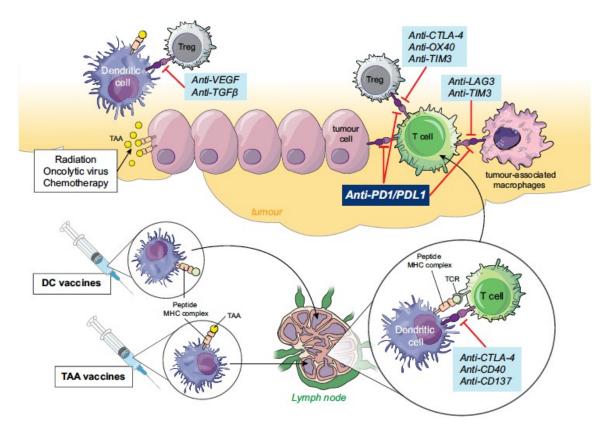
Post 3 cycles

Post 4 cycles

Post 6 cycles


Post 8 cycles

Special Patterns of Response to I-O Agents


- Sustained stabilization
- Response after initial progression
- Response/control in the presence of new lesions
- Heterogenous response

Baseline

After 2 courses

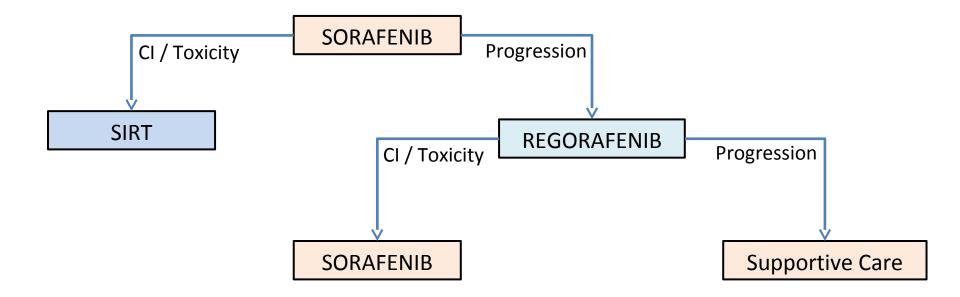
Improving the Effect of PD-1/PD-L1 Blockade

Ongoing Clinical Trials Testing IO Agents in HCC

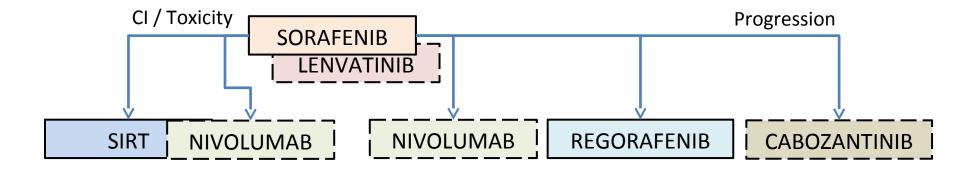
Anti-PD-1/PD-L1 agent	Combining agent	Mechanism of action	Patients	Population	NCT
Combinations with other immunotherapies					
Nivolumab	Ipilimumab	anti-CTLA4	620 *	НСС	01658878
Durvalumab	Tremelimumab	anti-CTLA4	144	НСС	02519348
Nivolumab	Pexavec	GMCSF-armed oncolytic virus	30	HCC	03071094
Combinations with anti	angiogenics				
Durvalumab	Ramucirumab	anti-VEGFR2 mAb	114	HCC +	02572687
Pembrolizumab	Lenvatinib	ТКІ	30	НСС	03006926
Pembrolizumab	Nintedanib	ткі	18	HCC +	02856425
SHR-1210	Apatinib	ткі	30	HCC +	02942329
PDR001	Sorafenib	ткі	50	НСС	02988440

HCC+: HCC and other histologies

Ongoing Clinical Trials Testing IO Agents in HCC


Anti-PD-1/PD-L1 agent	Combining agent	Mechanism of action	Patients	Population	NCT
Combinations with other targeted agents					
Nivolumab	Galunisertib	TGF-beta inhibitor	75	HCC	02423343
Nivolumab	CC-122	Pleiotropic pathway modifier	50	НСС	02859324
Pembrolizumab	XL888	Hsp90 inhibitor	50	HCC +	03095781
PDR001	INC280	c-met inhibitor	108	НСС	02474537
PDR001	FGF401	FGFR4 inhibitor	238	НСС	02325739
Combinations with locoregional therapies					
Nivolumab	TACE	Ischemia	14	НСС	03143270
Nivolumab	Y90	Beta radiation	40	НСС	03033446
Nivolumab	Y90	Beta radiation	35	HCC	02837029
Pembrolizumab	Y90	Beta radiation	30	HCC	03099564

HCC+: HCC and other histologies


1st Line Clinical Trials in Advanced HCC

Acronym	Agents	No. Patients	Completion Date
SORAMIC	SIRT + Sorafenib vs. Sorafenib	665	2017
STOP-HCC	SIRT + Sorafenib vs. Sorafenib	400	2018
CheckMate-459	Nivolumab vs. Sorafenib	726	2018
Himalaya	Durvalumab + Tremelimumab vs. Durvalumab vs. Sorafenib	1200	2020

Systemic Therapy of HCC 2017

Systemic Therapy of HCC 2018?

3L AGENTS in the absence of direct evidence?

Take Home Messages

- Patients with advanced HCC now may benefit from a broader spectrum of systemic targeted therapies
 - Sorafenib (and Lenvatinib?) and eventually SIRT in 1L patients
 - Regorafenib, Cabozantinib and Nivolumab in 2L patients

- Efforts now should focus on
 - Combination of systemic therapies (with strong rationale).
 - Combination with intraarterial therapies (TACE and SIRT) for intermediate stage patients
 - Adjuvant therapy for early stage patients

The International Liver Cancer Association Announces its 12th Annual Conference

SAVE LCA 2018 THE DATE LCA 2018 14–16 September 2018

London, United Kingdom

PRIMING KNOWLEDGE IN LIVER CANCER ACROSS DISCIPLINES The international multidisciplinary forum for liver cancer experts around the latest innovations in research and care

www.ilca2018.org

Abstract submissions open in January 2018