

How to manage patients with NASH?

Dr Raluca Pais

Institute of Cardiometabolisme and Nutrition (ICAN) Hôpital Pitie Salpetrière, Paris

2005

55 years old man

- W = 125 kg, H = 1.80m, BMI 38.58 kg/m2
- High blood pressure (2000), controlled under triple therapy (ARB, BBL and diuretics)
- Type 2 diabetes (2002) under Metformin
- Dyslipidemia controlled under statins
- OSA without CPAP
- Alcohol consumption 2 glass of wine/day
- Past cigarette smoking (10 PY, stopped since 2002)
- LFT: AST = 52, ALT = 123; GGT = 121; PAL = 97; BiliT = 12 micromol/l
- Lipids: CT = 2.41 g/l; TG = 0.81; HDL = 0.84 g/l; LDL = 1.41 g/l;
- FG = 5.9 mmol/l; insulin = 11.2 ; HOMA = 2.93, HbA1c = 7.4%
- Ferritin = 525 µmol/l, transferin saturation = 35%
- Bariatric surgery (sleeve) LB: S3A3F2

U1

CLINICAL CASE

What benefit would you expect from bariatric surgery?

- Weight loss of > 40% at 1 year
- T2DM resolution at 1 year
- Resolution of NASH at 1 year
- Resolution of NASH and fibrosis regression at 1 year

Patients in age groups from **18 to 60** years:

1. With **BMI ≥ 40 kg/m2**

OR

2. With BMI 35–40 kg/m2 with co-morbidities in which surgically induced weight loss is expected to improve the disorder (such as metabolic disorders, cardiorespiratory disease, severe joint disease, obesity-related severe psychological problems)

Bariatric surgery versus non-surgical treatment for obesity

Weight loss

MA: 11 studies with 796 individuals

CAPredictive factors for T2DM remission

Prediction factor	Score
Age (years)	
[15-41]	0
[42–52]	3
[53-69]	5
HbA _{1c} (%)	
[4.5–6.9]	0
[7.0–7.4]	2
[7.5–18.4]	4
Insulin	
No	0
Yes	3
Other glucose-lowering agents ^a	
No	0
Yes	1
Number of glucose-lowering agents ^b	
0	0
1	1
2	2
≥ 3	3
Diabetes duration (years)	
[0-6.9],	0
[7.0–13.9]	3
≥ 14	5
Ad-DiaRem overall score (sum of the above six components)	0-21

Ad-DiaRem Score = 9

Ad-DiaRem < 10 PPV = 93%; NPV = 72%

Aron-Wisnewsky, Diabetologia 2017

BARIATRIC SURGERY

- ✓ NASH disappeared in 85.4% of cases
- ✓ Fibrosis improved in 46%.
- The rate of disappearance of NASH was higher in patients with mild NASH than in those with moderate or severe NASH
- \checkmark Persistance of NASH was more frequent among GB than RYGB
- ✓ 14.6% of patients had persistent NASH 1 year after bariatric surgery. These patients had significantly lower weight loss, higher NAS and refractory IR profile

Lassailly, Gastroenterology 2015

Relationship between the evolution of T2DM after bariatric surgery and severity of liver lesions

Patients without remission of T2DM after bariatric surgery had more severe liver histology at baseline

Courtesy of Aron J & Clement K

2010

	2005	2010
Weight (kg)	125	100
BMI (kg/m2)	38.58	30.86
T2DM	YES	NO
Dyslipidemia	YES	NO
High BP	YES ((ARB, BBL, Diuretics)	YES (ARB)
OSA	YES	NO

- Alcohol consumption 2 glass of wine/day
- LFT: AST = 19, ALT = 25; GGT = 36; PAL = 97; BiliT = 9 micromol/l
- Lipids: CT = 2.05 g/l; TG = 0.81;
- FG = 5.9 mmol/l; insulin = 6.2 ; HOMA = 1.65, HbA1c = 6%

Surveillance by non invasive methods

2015

	2005	2010	2015
Weight (kg)	125	100	115
BMI (kg/m2)	38.58	30.86	35.5
T2DM	YES	NO	YES
Dyslipidemia	YES	NO	YES
High BP	YES ((ARB, BBL, Diuretics)	YES (ARB)	YES (ARB)
OSA	YES	NO	NO

- FG = 8.5 mmol/l; insulin = 12.1 ; HOMA = 4.57, HbA1c = 7.8%
- LFT: AST = 21, ALT = 30; GGT = 45; PAL = 87; BiliT = 11 micromol/l
- Lipids: CT = 2.85 g/l; TG = 1.21

Q2 Relationship between Normal ALT and liver histology?

▶29 to 33 IU/I for males,▶19 to 25 IU/I for females

ACG Clinical Guideline: Evaluation of Abnormal Liver Chemistries, The Am 1 Gastroenterol 2017

CAN Transaminases Level and Liver Histology

	Normal ALT (N = 63)	Increased ALT (N = 395)	Ρ
BMI	26 ± 4	27.4 ± 3.7	0.04
HOMA-IR	2.9 ± 1.4	4.6 ± 3.9	0.006
Type 2 Diabetes	11%	9%	NS
Metabolic syndrome	19%	21%	NS
NASH	59%	75%	0.01
> F2	22%	34%	NS

- The entire spectrum of NAFLD can be seen in patients with normal ALT
- Normal ALT is not a valuable criterion to exclude NASH or advanced fibrosis

Fracanzani, Hepatology 2008

2015

	2005	2010	2015
Weight (kg)	125	100	115
BMI (kg/m2)	38.58	30.86	35.5
T2DM	YES	NO	YES
Dyslipidemia	YES	NO	YES
High BP	YES ((ARB, BBL, Diuretics)	YES (ARB)	YES (ARB)
OSA	YES	NO	NO

- FG = 8.5 mmol/l; insulin = 12.1 ; HOMA = 4.57, HbA1c = 7.8%
- LFT: AST = 21, ALT = 30; GGT = 45; PAL = 87; BiliT = 11 micromol/l
- Lipids: CT = 2.85 g/l; TG = 1.21
- FT = 0.48; FS M probe= 7.8 kPa (IQR = 3.6 kPa, 27.1%, TDR = 76%); FS XL probe = 8.2 kPa; IQR = 1.2; 10%; TDR = 10%.
- LB: S2A2F2

Risk factors associated with diabetes recurrence?

- Initial weight before bariatric surgery
- Weight changes during FU
- Diabetes duration and control before bariatric surgery?
- NAFLD?

CAN Bariatric Surgery and Long-term Remission of Type 2 Diabetes

Factors associated with diabetes recurrence at 10

<u>years</u>

- Initial BMI : OR = 1.37, p = 0.14
- Weight changes between baseline and FU: OR = 4.52, p < 0.001
- Diabetes duration: 3.71, p = 0.029
- Male sex: OR = 3.60, p = 0.001

Sjöström, JAMA 2014

NAFLD is additive to established MRF in increasing the risk of incidentT2DM

N = 12 853 subjects from a South Korean occupational cohort

	Risk factors	OR, 95% CI	
	IR alone	3.66 (1.89 – 7.08)	
	Overweight/obesity	1.29 (0.62 – 2.71)	
	NAFLD	2.73 (1.38 – 5.41)	
	IR + overweight/obesity	6.16 (3.38 – 11.22)	
	IR + NAFLD	6.73 (3.49 – 12.97)	
	Overweight/obesity + NAFLD	3.23 (1.78 – 5.89)	
	IR + overweight/obesity +	14.13 (8.99 – 22.2)	
	NAFLD		
Adju	sted for age, sex, alcohol, smoking st	atus, exercise, educational status	, TG, and
ALT			

Sung, Diabetes Care 2012

Severity of NAFLD and incidentT2DM

Cumulative incidence of diabetes

Chang, Am J Gastroenterol 2013

AFLD and type 2 diabetes – bidirectional relationship

Worsening of histological features and fibrosis progression

Type 2 diabetes

In patients with T2DM, the presence of NAFLD should be looked for irrespective of liver enzyme levels, since T2DM patients are at high risk of disease progression (**A2**)

In persons with NAFLD, screening for diabetes is mandatory, by fasting or random blood glucose or HbA1c (**A1**)

NAF

Increased risk of incident type 2 diabetes

CV disease is the first cause of death in noncirrhotic patients with NAFLD

Cause of death	Cases, n N = 646	%
Psychiatric disorder (including suicide)	2	0.9
Infections	4	1.9
Kidney disease	4	1.9
External trauma	4	1.9
Gastrointestinal	5	2.4
Nervous system	6	2.8
Other	9	4.2
Endocrine (including T2DM)	11	5.1
Liver-related	17	<u>7.9</u>
Respiratory disease	18	8.4
Extrahepatic malignancy	55	25.7
Cardiovascular	79	36.9
Total	214	33.1

Hagstrom, J Hepatol 2017 Dulai, Hepatology 2017

Q5

How to evaluate the CV risk?

- CV risk score sheets?
- Early ATS
 - C-IMT?
 - Coronary Ca2+ Score?

Predictive value for future CV events?

10 years risk of fatal CV disease in Europe

14% risk of CV events at 10 years

Traditional CHD risk prediction schemes need further improvement as the majority of the CHD events occur in the "low" and "intermediate" risk groups.

CAN Early detection of subclinical ATS improves prediction of coronary heart

disease risk ARIC (Atherosclerosis Risk in Comunity) Study; 13145 subjects between 45 – 64 years of a

Nambi, JACC 2010

10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional

Yearly evaluation for CV events

McClelland, JACC 2015

Calculate 10-year CHD risk

Back to CAC Tools

Q6 Is NAFLD an independent predictor of CV disease beyond classical CV risk factors?

Transaminases Level and risk factors for atherogenesis

Siddiqui, Gastroenterology 2013

CARINSAMINASES Levels, early ATS and CV ris

CAN NAFLD and early ATS – transversal studies

NAFLD and C-IMT

Mode	Study name	<u>Outcom</u> e	Statistics for each study			Sample size			
			Std diff in means	Lower limit	Upper limit	p-Value	NAFLD	Controls	Total
	Brea A et al, 2005	IMT	0.9486	0.4863	1.4108	0.000057692	40	40	80
	Aygun C et al, 2008	IMT	1.1902	0.7147	1.6656	0.000000930	40	40	80
	⊤argher G et al, 2004	IMT	1.8323	1.3251	2.3395	0.000000000	45	40	85
	⊤argher G et al, 2006b	IMT	2.4083	2.0443	2.7724	0.000000000	100	100	200
	Targher G et al, 2006	IMT	2.2421	1.9125	2.5716	0.000000000	85	160	245
	Fracanzani et al, 2008	IMT	1.3258	1.0911	1.5605	0.000000000	125	250	375
	Volzke H et al, 2005	IMT	0.1577	0.0767	0.2387	0.000135208	992	1440	2432
Fixed			0.5179	0.4472	0.5885	0.000000000	1427	2070	3497
Random			1.4391	0.6320	2.2462	0.000474500	1427	2070	3497

Std diff in means and 95% CI

***NAFLD and CAC > 100**

Controls NAFLD

-4.00

Study name	Odds	Lower	Upper
	ratio	limit	limit
Chen 2010	2.462	1.065	5.691
Chhabra 2013	2.450	1.082	5.549
Jung 2010	1.240	0.680	2.261
Kang 2014	1.617	0.908	2.880
Khashper 2013	1.170	1.046	1.308
Kim 2012	1.250	0.993	1.574
Kim 2015	0.532	0.227	1.246
Osawa 2015	0.790	0.408	1.531
	1.242	1.017	1.516
P heterogeneity = 0.10 , $I2 = 42\%$			

Sookoian, J Hepatol 2008 Jaruvongvanich, Dig Liv Dis, 2016

NAFLD is an independent predictor for the occurrence of early ATS - Longitudinal studies

C-IMT **Coronary Calcium Score** 1872 subjects 4731 subjects FU = 4 years $FU = 8 \pm 4$ years 1.0 80 0.8 Plaque free survival 4 0.6-CAC Score 0.4 p < 0.05 20 0.2 No steatosis at baseline Steatosis at baseline 0.0-P for difference in slopes < 0.001 -25 10 0 5 0 Years 2 0 6 512 Time since first CAC (years) 1421 1103 100 No steatosis Steatosis 451 301 115 17 NAFLD (-) NAFLD (+)

Pais, J Hepatol 2016

Sinn, Gut 2016

8

Adding NAFLD to classical CVRF or early ATS improved CV risk prediction

Pais et all., unpublished data

- No, because of safety issues
- Yes for reducing CV risk
- Effect on liver histology?

CAN Liver safety of statins in NAFLD

CAN Statins use – protection from severe form of NAFLD

- ■3 ✓ Multicenter European cohort
 ✓ 1201 subjects
 ■2 ✓ 107 to king a stating
- ■2 ✓ 107 taking statins

Statin Yes

(n = 107)

D0

0-

Statin No

(n = 1094)

Dongiovani, J Hepatol 2015

CAN Statins use – protection from severe form of NAFLD

346 pts with T2DM and histological proven NAFLD 57% had NASH, 48% had significant fibrosis; 45% were taking statins

Nascimbeni, BMJ Gastroenterol 2016

Statin Use and Risk of Cirrhosis and Related Complications in Patients With CLD

- ✓ MA of patients with CLD
- ✓ 3 RCT
- ✓ 10 cohort studies
- \checkmark 46% pts on statins

- 58% lower risk of progression of fibrosis or development of
- Girrhosis 46% lower risk of progression to decompensated cirrhosis
- 39% lower risk of mortality

Q8 Which of the following would you consider an appropriate therapeutic option:

✓ Lifestyle changes
 ✓ Complete alcohol abstinence
 ✓ Switch for RYGB?
 ✓ Metformin for T2DM
 ✓ GLP1 for T2DM
 ✓ Inclusion in a clinical trial for NASH

Life style modifications – dietary 1. Histologicansprovement

- 293 patients; 89% with paired liver biopsy
- F/u: 52 weeks
- Low-fat hypocaloric diet (- 750 kcal)

Life style modifications – dietary interventions 2. Fibrosis

Vilar Gomez, Gastroenterology 2015

✓ 3% - 5% weight loss to improve steatosis
 ✓ 7% - 10% for NASH resolution
 ✓ > 10% for fibrosis regression

Negative predictors of response:

- Older age
- Type 2 diabetes
- More severe NASH activity

<u>Weight loss is difficult to maintain in</u> <u>real-life settings :</u>

- Maximum at 6 month
- 6% of initial body weight at 1 year
- 50% of initial weight loss is regained in 3 years

Dansinger, Ann Int Med, 2007

Is Moderate Alcohol Use in Nonalcoholic Fatty Liver Disease Good or Bad ?

Is moderate alcohol use in NAFLD good or bad?

_ _ _ _

Sinn, 2014	Moderate alcohol use(< 20 g/day) was associated with decreased odds of carotid plaque
Dunn, 2012	The odds of NASH among moderate alcohol users was reduced compared to abstainers
Kwon 2014	The odds of severe fibrosis (F3 or F4) were significantly lower in those drinkers of \ge 24 gram-years of alcohol vs. those drinking <24 gram-years
Cotrim, 2009	Bariatric surgery – similar risk for NASH±fibrosis in drinkers vs.non drinkers
Dixon 2011	Decreased odds of diabetes and NASH (bariatric surgery)
Ekstedt, 2009	Heavy episodic drinking, without exceeding 140 g/week, had a strong association with fibrosis progression
Asha 2010	Among patients with NASH cirrhosis followed prospectively, moderate alcohol use was associated with an increased risk of HCC
	Ajmera et all., Hepatology 2017

Is moderate alcohol use in NAFLD good or bad?.....

Limitations:

- \checkmark Definition of moderate alcohol consumption
- ✓ Pattern of drinking (social drinking? Binge drinking?)
- Cross-sectional design (outcome and predictor measured at the same time)
- \checkmark Causality cannot be established

A requiem for Metformin

Musso, Hepatology 2010

Liraglutide : primary end-point and evolution of histological lesions

	Liraglutide (n = 23)	Placebo (n = 22)	р
Disparition de NASH et absence d'aggravation de fibrose	9 (39,1 %)	2 (9,1 %)	< 0,05
Score de fibrose Kleiner	-0,2	0,2	ns
Amélioration, n (%)	6 (26,1 %)	3 (13,6 %)	ns
Aggravation, n (%)	2 (8,7 %)	8 (36,4 %)	< 0,05
Score NAS total	-1,3	-0,8	ns
Ballonnisation	-0,5	-0,2	Ns
Amélioration, n (%)	14 (60,9 %)	7 (31,8 %)	0.05
Stéatose	-0,7	-0,4	ns
Amélioration, n (%)	19 (82,6 %)	10 (45,5 %)	< 0,05
Inflammation lobulaire	-0,1	-0,2	ns
Amélioration, n (%)	11 (47,8 %)	12 (54,5 %)	ns

Armstrong, The Lancet,

Liraglutide :effect on metabolic parameters and LFTs

	Liraglutide (n = 26)	Placebo (n = 26)	р
Métabolique IMC (kg/m2) Poids (kg) TA systolique (mmHg) HbA1c (%) Glycémie (mmol/l) HDL cholestérol (mmol/l)	-1,84 -5,25 -5,0 -0,49 -1,04 0,07	-0,27 -0,58 -3,0 0,04 0,73 -0,04	0,005 0,003 ns 0,074 0,006 0,014
Tests hépatiques ALAT (UI/mI) ASAT (UI/mI) GGT (UI/mI) Cytokératine 18 (UI/mI) ELF test	-26,6 -15,8 - 33,7 -185 -0,25	-10,2 -8,6 -7,2 -92 0,09	ns ns <mark>0,013</mark> 0,097 0,052

Armstrong, The Lancet,

Liraglutide : histological benefit independent of weight loss, glycemic control or the presence of T2DM

Screen for extarahepatic complications, particularly CV Control of CVRF

Life style changes

Specific therapy/clinical trials