

Case Report: Refractory variceal bleeding

Christophe Hézode, Henri Mondor Hospital, Paris-Est University, Créteil, France Thank you to Marika Rudler, Dominique Thabut, Adrian Gadano, and Jaime Bosch for the preparation of the presentation

Paris, January 14th 2019

Link of interest

Speaker/adviser: Abbvie, Gilead, MSD

Medical History:

- Ischemic cardiomyopathy
- Myocardial infection, coronary stenting (2015)
- No heart failure
 - Obesity (BMI=39)
 - Hypercholesterolemia
 - Alcoholic cirrhosis
 - Platelets=94000/mm3
 - Child-Pugh B 9
- Endoscopy: Grade 2 EV

- Alcohol status: recent discontinuation

- Treatment: aspirin, atorvastatin

How do you manage portal hypertension?

□Non selective beta blockers

Band ligation

□Non selective beta blockers and Band ligation

□No treatment

HVPG responders to NSBB have less variceal rebleeding, a lower incidence of ascites, and better survival

Abraldes....Bosch, Hepatology 2003

In compensated cirrhosis, response to Propranolol is almost negligible in patients without CSPH

Primary and Secondary Prophylaxis of Variceal Bleeding Current Guidelines

"There is no indication for treating patients without high-risk varices" Negative timolol study (Grooszmann et al , NEJM 2005)

*Only recommended therapy for high-risk small varices

Carvedilol, a NSBB with anti- α 1 adrenergic activity has a greater effect decreasing HVPG

New!

New attempt at early therapy: The PREDESCI Study

PREventing the DEcompenSation of Cirrhosis with non-selective beta-blockers

- Cooperative, multicenter, placebo-controlled, randomized clinical trial
- Population studied: compensated cirrhotics with HVPG \ge 10 mmHg (CSPH), without varices requiring treatment or previous decompensation (n=210)

Acute HVPG response to iv Propranolol*:

acute responders → Propranolol vs placebo placebo non-responders -> Carvedilol vs

Patients developing varices requiring treatment received EBL

Propranolol/Carvedilol (according to HVPG response) prevents decompensation of cirrhosis: The **PREDESCI** Study

* less deaths due to bleeding and infections

Abraldes, Villanueva,... Bosch. Gastroenterology 2016

Simvastatin prevents **ACLF** in cirrhotic rats (Tripathi et al, Gastroenterology 2018) Simvastatin protects the liver from **LPS** induced injury (LaMura et al, Hepatology 2013) Simvastation protects the cirrhotic liver during **acute bleeding** (Meireles et al, Shock 2016)

Statins are associated with a decreased risk of <u>decompensation</u> and <u>death</u> in compensated HCV cirrhosis*

Decompensation

New!

Death

*Propensity score matched study

Mohanty, et al. Gastroenterology 2016

A 56-year-old man presenting with hematemesis

Medical History:

- Ischemic cardiomyopathy
- Myocardial infection, coronary stenting (2015)
- No heart failure
 - Obesity (BMI=39)
 - Hypercholesterolemia
 - Alcoholic cirrhosis diagnosed two years ago
 - Propranolol (160 mg/day)
 - No HCC
 - Alcohol status: Active (relapse since 3 months) around 100g/day

Treatment: propranolol, aspirin, atorvastatin

A 56-year-old man presenting with hematemesis

Medical report:

- Hematemesis
- No hepatic encephalopathy (WH), Glasgow score=1
- Blood pressure: 115/65 mmHg
- Heart rate: 76/min
- Ascites and jaundice
- Splenomegaly

Laboratory findings:

- Hb=7.5 g/dL
- Platelets=44000/mm3
- AST/ALT:75/44 IU/L; GGT=120 IU/L
- Bilirubin T/C=73/50 µmol/L
- PT=39%, INR=2.1
- Creatinine=100 μmol/L, natremia=120 mmol/L
- Albumin 25g/L

What is your initial management?

Blood transfusion

- Non selective beta blockers
- Vasoactive drugs
- Antibiotic therapy with quinolones
- □ Lactulose to prevent HE

Initial management

- Initial resuscitation
- Blood transfusion (ischemic cardiopathy): 3 units
- Antibioprophylaxis: ceftriaxone IV
- Vasoactive treatment: somatostatin
- Proton pump inhibitors before endoscopy
- No prevention of hepatic encephalopathy
- Perfusion of erythromycin in the absence of contra indication
- Upper gastro-intestinal endoscopy

Specific treatment: Recommendations of Baveno VI

Lebrec, Eur J Hepatol Gastroenterol 2004 Garcia-Tsao, Hepatology 2007 De Franchis et al, J Hepatol 2015 Villanueva et al. NEJM 2013 Seo et al. Hepatology 2014

Upper endoscopy at admission

Evolution

Suspected pneumonia (Day 3)
Switch to piperacillin-tazobactam+ ciprofloxacin)

Severe AH confirmed with transjugular liver biopsy

• HVPG=18mmHg

AH in the context of bleeding: what do you think?

□ It should not be treated because of high risk of infection

The Lille model cannot be applied so there is not guidance for the treatment with corticoids

□ Prognosis is poor in case of severe AH in the context of bleeding

Antibiotic therapy is probably of interest in this context

□AH is rare in case of bleeding so no biopsy is needed

AH and bleeding: same history?

- 80% of patients GIB+ and DF>32 have histological signs of AH

- AUC for the Lille model for predicting 6-month survival:

similar for all patient (0.71±0.06) and AH-GIB+ patients (0.74±0.06)

- Less infection in GIB+ patients (24 vs 44%): due to systematic

antibioprophylaxis?

- Encourage to perform the same diagnostic/therapeutic management

Evolution

Hematemesis (day 2 after initiation of corticosteroids)

- Haemorrhagic shock (Hb=4.5 g/dL) requiring catecholamines
- Massive blood transfusion
- Alteration of consciousness
- Emergency orotracheal intubation
- Upper GI endoscopy: active bleeding from EV. EBL n emergency
- Uncontrolled bleeding

How do you manage?

Balloon tamponade

Esophageal stents

Esophageal Balloon Tamponade Versus Esophageal Stent in Controlling Acute Refractory Variceal Bleeding: A Multicenter Randomized, Controlled Trial

Àngels Escorsell,^{1,2} Oana Pavel,^{2,3} Andrés Cárdenas,^{2,4} Rosa Morillas,^{2,5} Elba Llop,^{2,6} Càndid Villanueva,^{2,3} Juan C. Garcia-Pagán,^{1,2} and Jaime Bosch^{1,2}; for the Variceal Bleeding Study Group

 Primary endpoint: composite Absence of rebleeding+ absence of SAE+Day15 survival

Secondary endpoints

- Rebleeding at day 15 and 42
- Survival at day15 and 42

Variable	Esophageal Stent (n = 13)	Balloon Tamponade (n = 15)	P Value
Inclusion criteria, n (%)			0.93
Failure of combined therapy	8 (62)	9 (60)	
Massive bleeding	5 (38)	6 (40)	
Interval admission-inclusion, days*	1.5 (0-7)	1 (0-25)	0.60
ata suggest that esophageal stents are a	s effective as b	alloon tampon	ade and
ore safe in refractory variceal bleeding (3;	C)		
Hosence of ones, in (70)	11 (04)	0 (00)	0.077
Survival at 15 days, n (%)	9 (69)	8 (47)	0.39
Absence of bleeding, 6 weeks, n (%)	7 (54)	7 (47)	0.25
Absence of device-related SAE, n (%)	12 (92)	9 (60)	0.049
Causes of death (15 days; n)			0.044
Hypovolemic shock	1	6†	
MOF after sepsis	3	1	
Survival at 6 weeks, n (%)	7 (54)	6 (40)	0.46
Use of additional resources	4 (31)	11 (73)	0.059
(during the hospital stay), n (%)		Escorsell A, et a	al. Hepatology 20

D

How do you manage?

□ Salvage TIPS

Salvage TIPS

Author	Patients	Child A/B/C	Control of bleeding	Lethality
Mc Cormick	20	1/7/12	100%	55%
Jalan	19	3/3/13	100%	42%
Sanyal	30	1/7/22	100%	40%
Chau	112	5/27/80	98%	37%
Gerbes	11	1/3/7	100%	27%
Banares	56	11/22/23	96%	28%
Azoulay	58	3/8/47	93%	30%
Bouzbib	106	6/32/68	80%	38% (d42)

Salvage TIPS

Author	Patients	Child A/B/C	Control of bleeding	Lethality
Mc Cormick	20	1/7/12	100%	55%
Jalan	19	3/3/13	100%	42%
Sanyal Etiology	of death	1/7/22	100%	40%
Chau Liver fa	ailure failure	5/27/80	98%	37%
Gerbes • Reblee	ding	1/3/7	100%	27%
Banare		11/22/23	96%	28%
Azoulay	58	3/8/47	93%	30%
Bouzbib	106	6/32/68	80%	38% (d42)

Salvage TIPS

Author	Patients	Child A/B/C	Control of bleeding	Lethality
Mc Cormick	20	1/7/12	100%	55%
Jalan	19	3/3/13	100%	42%
Sanyal	30	1/7/22	100%	40%
Chau	112	5/27/80	98%	37%
Gerbes		1/3/7		
Banares	Mortality	at 1 year w	ithout L1 in C1	14-C15 = 100%
Azoulay	58	3/8/47	93%	30%
Bouzbib	106	6/32/68	80%	38% (d42)

What could have been done to avoid this rebleeding episode?

□ Early TIPS placement?

□ How to select patients with a risk of rebleeding?

Clinical and biological criteria

Child-Pugh B + active bleeding or Child-Pugh C ≤13 patients randomised (no HCC, PVT..)

• Significant improvement of uncontrolled bleeding and rebleeding

• Improved short and long term survival in the Early TIPS group

Garcia-Pagan et al. NEJM 2010

More serious adverse events?

Development of hepatic encephalopathy or other serious events: no significant difference Garcia-Pagan et al. NEJM 2010 An early TIPS with PTFE-covered TIPS within 72 hours (ideally \leq 24 hours) must be considered in patients bleeding from EV, GOV1 and GOV2 at high-risk of treatment failure (e.g. Child-Pugh class C <14 points or Child class B with active bleeding) after initial pharmacological and endoscopic therapy (1b;A). Criteria for high-risk patients should be refined

• Impact of early-TIPS on survival?

• Active bleeding in Child B patients: predictor?

Preemptive - TIPS improves outcome in high - risk variceal bleeding: an Observational Study

Hernandez-Gea V, et al. Hepatology 2019

Identifying optimal candidates for early TIPS among patients with cirrhosis and acute variceal bleeding: a multicentre observational study

Identifying optimal candidates for early TIPS among patients with cirrhosis and acute variceal bleeding: a multicentre observational study

Lv Y, et al. Gut 2018

In practice: CHOC French observatory (58 centres)

Academic centres	Study population	Non-academic
with PHT-related	with PHT-related	centres with PHT-
bleeding 600	bleeding 964	related bleeding
cirrhotic patients	cirrhotic patients	364 cirrhotic patients
Child-Pugh C or	Child-Pugh C or	Child-Pugh C or
B + active bleeding	B + active bleeding	B + active bleeding
at endoscopy	at endoscopy	at endoscopy
n = 301 (50%)	n = 460 (48%)	n = 159 (44%)
Patients eligible for	Patients eligible for	Patients eligible for
early-TIPS	early-TIPS	early-TIPS
n = 207 (69%)	n = 326 (71%)	n = 119 (75%)
Early-TIPS	Early-TIPS	Early-TIPS
placement	placement	placement
n = 19 (9%)	n = 22 (7%)	n = 3 (2.5%)

Final outcome

- Not candidate for LT
- Death within 48 hours after TIPS insertion
- Multi-organ failure:
 - Persistent shock
 - Severe coagulopathy with diffuse mucosal bleeding
 - Acute kidney failure
 - Persistent coma in spite of discontinuation of drugs
 - Blood cultures positive with Pseudomonas *aeruginosa*

Take home messages

• Early TIPS must be discussed in high risk patients

 Esophageal stents are safer than balloon tamponade and should be available

 Salvage TIPS : high mortality in the most severe patients. Don't forget liver transplant in good candidates!