Advances in percutaneous ablation and systemic therapies for hepatocellular carcinoma

Paris Hepatology Congress 2019

Pierre Nahon

MEDECINE

BIOLOGIE HUI

UNIVERSITÉ PA

Service d'Hépatologie Hôpital Jean Verdier Bondy – Université Paris 13

INSERM 1162 - Paris 5 Génomique fonctionnelle des tumeurs solides

Conflicts of interest

- Speaker for Abbvie, Bayer, BMS, Gilead, Ipsen
- Advisory board for Abbvie, Astra Zeneca, Bayer, BMS, Ipsen

Therapy is decided according to tumor burden, liver function, and PS Patients: Child-Pugh A/B, preserved ECOG PS, absence of severe comorbidities

First case

- \circ 71 years old male
- Child-Pugh A6 HBV related cirrhosis (treated)
- Grade II esophageal varices
- Platelets count: 98 000 / mm3
- Bilirubin: 9 mg/L
- Albumin: 34 g/L
- Prothrombin time: 77%
- Liver stiffness: 22 Kpa
- Alpha-fetoprotein: 478 ng/ml
- PS 0, ECOG 0

Pretherapeutic imaging

Which treatment?

- 1. Transplantation
- 2. Resection
- 3. Ablation
- 4. TACE
- 5. Other

Which treatment?

- 1. Transplantation
- 2. Resection
- 3. Ablation
- 4. TACE
- 5. Other

BCLC staging

Surgical Resection of Hepatocellular Carcinoma in Cirrhotic Patients: Prognostic Value of Preoperative Portal Pressure

Gastroenterology 2006

Conclu-

<u>sions</u>: Cirrhotics with increased portal pressure are at high risk of hepatic decompensation after resection of hepatocellular carcinoma. Surgical resection should therefore be restricted to patients without portal hypertension.

Portal hypertension (CSPH): Resection?

1108 patients (386 with vs 722 without HP) in **8** studies Berzigotti, Bruix, Hepatology 2015

	С	With PH		Without PH			Odds Ratio	Odds Ration, Cl95%		
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	LIVEI		
	3.1.2 Studies using HVPG to diagnose CSPH						decompensation			
	Boleslawski 2012	13	18	7	22	7.7%	5.57 [1.42, 21.86]			
	Bruix 1996	11	15	0	14	1.8%	74.11 [3.61, 1522.44]			
HVPG:	Llop 2012	3	10	0	36	1.7%	34.07 [1.59, 730.64]	1 4 00	24	
> 10	Subtotal (95% CI)		43		72	11.2%	14.99 [2.81, 80.06]	14.99		
\geq 10 mm Hg	Total events	27		7						
	Heterogeneity: Tau ² = 0.84; Chi ² = 3.09, df = 2 (P = 0.21); l ² = 35%									
	Test for overall effect:	Z = 3.17 (P = 0.0	02)						
	3.1.3 Studies using F	PVP								
ים/ \ם	Hidaka2012	15	48	20	129	18.4%	2.48 [1.14, 5.37]			
PVP.	Subtotal (95% CI)		48		129	18.4%	2.48 [1.14, 5.37]	2 10	•	
≥ 20 cm H2O	Total events	15		20				2.40		
	Heterogeneity: Not applicable									
	Test for overall effect:	Z = 2.30 (P = 0.0	2)						
a .	3.1.4 Studies using surrogate parameters to diagnose CSPH							-		
Surrogate:	Capussotti 2006	27	99	18	118	22.1%	2.08 [1.07, 4.07]			
	Cucchetti 2009	11	89	6	152	12.2%	3.43 [1.22, 9.63]			
GEV or	Ruzzenente2011	14	44	12	91	15.5%	3.07 [1.28, 7.39]			
	Santambrogio 2013	18	63	22	160	20.6%	2.51 [1.24, 5.09]	2 56		
Plt < 105/ml or	Subtotal (95% CI)		295		521	70.4%	2.56 [1.73, 3.80]	2150	•	
	Total events	70		58						
Soleen > 12 cm	Heterogeneity: Tau ² =	0.00; Chi ²	= 0.84	df = 3 (P	= 0.84); l ² = 0%				
	Test for overall effect: Z = 4.69 (P < 0.00001)									
Pooled	Total (95% CI)		386		722	100.0%	3.04 [2.02, 4.59]		•	
	Total events	112		85						
	Heterogeneity: Tau ² = 0.08; Chi ² = 9.29, df = 7 (P = 0.23); l ² = 25%							10 10		
	Test for overall effect: Z = 5.31 (P < 0.00001)						U.01 U.1	Higher With CODU		
	Test for subgroup diffe	erences: C	hi² = 4.	13, df = 2	(P = 0.1)	13), l ² = 51	1.6%	igner windut CSPH	Higher With CSPH	

Ablation or resection ?

	Ablation	Resection
2 or 3 nodules	Distant	Same segment
Localization	Deep	Superficial
Liver function	Gooda	Excellentb
Portal Hypertension	Yes	No
Mortality	0.3%	1%
5-yrs survival	76% in patients eligible for resection	75%

a Malades appartenant principalement à la classe A ou B de Child-Pugh b Malades appartenant principalement à la classe A de Child-Pugh.avec bilirubine normale et sans hypertension portale

BCLC (AASLD/EASLD)

Percutanous ablation

Monopolar RFA

Monopolar RFA

Monopolar RFA

Monopolar RFA

Monopolar RFA

No touch multibipolar RFA for HCC

Radiology

Olivier Seror, MD, PhD Gisèle N'Kontchou, MD Jean-Charles Nault, MD Yacine Rabahi, MD Pierre Nahon, MD, PhD Nathalie Ganne-Carrié, MD, PhD Véronique Grando, MD Nora Zentar, MD Michel Beaugrand, MD Jean-Claude Trinchet, MD, PhD Abou Diallo, MD Nicolas Sellier, MD Radiology: Volume 280: Number 2—August 2016

Hepatocellular Carcinoma within Milan Criteria: No-Touch Multibipolar Radiofrequency Ablation for Treatment—Long-term Results¹

Large (≥5.0-cm) HCCs: Multipolar RF Ablation with Three Internally Cooled Bipolar Electrodes—Initial Experience in 26 Patients¹

Seror et al, Radiology 2012

http://dx.doi.org/10.1016/j.jhep.2016.07.010

Comparison of no-touch multi-bipolar vs. monopolar radiofrequency ablation for small HCC

Arnaud Hocquelet^{1,2,*}, Christophe Aubé^{3,4}, Agnès Rode⁵, Victoire Cartier³, Olivier Sutter^{6,7}, Anne Frederique Manichon⁵, Jérome Boursier^{4,8}, Gisèle N'kontchou⁹, Philippe Merle¹⁰, Jean-Frédéric Blanc¹¹, Hervé Trillaud^{1,2}, Olivier Seror^{6,7,12}

On October 2009 :

 Near no touch RFA consisting in inserting 7 straight electrodes with 4 cm active tips: 6 in square configuration at periphery of the tumor and 1 in its center.

- 200 kJ in 42' minute of application time has been delivered
- 2 days of hospital stay

One month later

5 years later

Percutaneous treatment of hepatocellular carcinoma: State of the art and innovations

Jean-Charles Nault^{1,2,3,*,†}, Olivier Sutter⁴, Pierre Nahon^{1,2,3}, Nathalie Ganne-Carrié^{1,2,3}, Olivier Séror^{2,3,4,*}

Second case

- 69 years old male
- Child-Pugh A6 alcohol-related cirrhosis
- Grade I esophageal varices
- $\circ\,$ Platelets count: 108 000 / mm3
- Bilirubin: 7 mg/L
- Albumin: 45 g/L
- Prothrombin time: 97%
- Liver stiffness: 62 Kpa
- Alpha-fetoprotein: 5ng/ml
- PS 0, ECOG 0

Imaging findings

Which treatment?

1. TACE

2. Radio-embolization

3. Sorafenib

4. Lenvatinib

5. Other systemic therapy

Which treatment?

1. TACE

2. Radio-embolization

3. Sorafenib

4. Lenvatinib

5. Other systemic therapy

Radioembolization : negative trials

SARAH trial (West) Vilgrain et al, Lancet Oncol 2017

Intent-to-treat population

Treated population

SIRveNIB trial (East) Chow et al, JCO 2018

New molecules: where do we stand?

Llovet et al, Nature Reviews 2016

New molecules: where do we stand?

Llovet et al, Nature Reviews 2016

EASL 2018: recommandations for HCC management

- *Other molecular therapies (sunitinib, linifanib, brivanib, tivantinig, erlotinib, everolimus, ramucirumab)
- Weak recommendation: more evidence needed
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol (2018),

Lenvatinib: an alternative to sorafenib in first line

Second case (continued)

- \circ The patient received sorafenib full dose
- Tolerance OK except asthenia grade I
- CT scan every 2 months: stable disease for 8 months
- Progression at month 9 with new hepatic lesions and one lung metastasis
- \circ Liver function preserved

Which treatment?

- 1. Lenvatinib
- 2. Regorafenib
- 3. Cabozantinib
- 4. Nivolumab
- 5. Other

Which treatment?

- 1. Lenvatinib
- 2. Regorafenib
- 3. Cabozantinib
- 4. Nivolumab
- 5. Other

Regorate in : first approved systemic therapy in second line

RESORCE (NCT01774344)—a multinational,* randomized, double-blind, placebo-controlled phase III study that will evaluate the efficacy and safety of regorate regorate in patients with advanced liver cancer who have progressed on prior sorafenib

Stratification

- Geographic region (Asia vs ROW)
- Macrovascular invasion
- Extrahepatic disease
- ECOG PS (0 vs 1)

AFP, alpha-fetoprotein; ECOG PS, Eastern Cooperative Oncology Group performance status; ROW, rest of world.

Adapted from Bruix J, et al. Lancet. 2017;389:56-66.

<sup>ECOG PS (0 vs 1)
AFP (<400 ng/mL vs ≥400 ng/mL)</sup> atient consent, or discontinuation of therapy by the treating physician.

Regorafenib and OS Benefit Compared With Placebo in patients with HCC Who Have Progressed on Sorafenib

Bruix J, et al. Lancet. 2017;389:56-66.

Improvement in OS With Regorafenib Was Maintained in All Preplanned Subgroups

Subgroup						n/event	Hazard ratio (95% CI)
Age group						5	
<65 years		_				315/205	0.65 (0.49–0.87
≥65 years			-			258/168	0.74 (0.54–1.02
Sex							
Male						504/327	0.65 (0.52–0.82
Female						69/46	0.88 (0.48–1.62
Geographical region							
Asia						216/142	0.65 (0.46-0.92
ROW						357/231	0.68 (0.52–0.90
ECOG score						077/004	0.01 (0.17.0.00
0						377/231	0.61 (0.47-0.80
1						196/142	0.78 (0.55–1.11
						004/404	0 07 (0 50 0 0)
<400 ng/mL						324/194	0.67 (0.50-0.90
≥400 ng/mL						249/179	0.68 (0.50-0.92
Child-Pugh score						000/000	0.00 (0.40.0.70
A5						362/222	0.60 (0.46-0.79
						199/141	0.80 (0.57–1.13
Extranepatic disease						101/100	0.07/0.00 1.40
NO						161/103	0.97 (0.63-1.48
Yes						412/270	0.60 (0.47–0.77
Macrovascular Invasion						400/250	
NO						409/259	0.07 (0.52-0.80
Yes						104/114	0.67 (0.46–0.98
	1, 01					107/00	
DOUT						107/00	
NO						400/305	0.03 (0.50-0.79
res		-				257/220	
Hepaniis B						3311230	
NO						210/135	0.56 (0.41-0.62
Tes						454/205	
				_		434/293	0.05 (0.51-0.62
NU				-		119/70	0.79 (0.49–1.20
Tes Alaphal usa						120/222	0 50 (0 46 0 76
No						420/2/3	0.03 (0.40-0.70
No						145/100	0.92 (0.01-1.36
les		1					
	0	0.5 1.	.0	1.5	2.0		
		—					
		Eavors regoratenib		Eavors placebo			

Bruix J, et al. Lancet. 2017;389:56-66.

Sequential treatment with sorafenib and regorafenib: effet on survival

Adapted from Finn R, et al. ASCO GI 2017. Abstract 344.

Cabozantinib : another option in second line (and beyond?)

Abou-Alfa et al, NEJM 2018

Towards new recommandations?

Benefits of immunotherapy for cancer treatment

Check-point inhibitors

NIVOLUMAB

Nivolumab (anti-PD-1; BMS-936558; ONO-4538)

- Fully human, IgG4 PD-1 receptorblocking monoclonal antibody^[1-3]
- Inhibits a major immunosuppressive mechanism directly at the tumor site
 - Prevents inactivation or reactivates ability of T cells to attack the tumor^[2]
- Binds to PD-1 receptors on T cells with high affinity
 - Selectively disrupts inhibitory signalling triggered by PD-L1 and PD-L2
 - Restores normal T-cell antitumor function^[1,3]

Pardoll DM, Nat Rev Cancer 2012

PD1-PDL1 pathway

Lancet. 2017 Apr 20. [Epub ahead of print].

Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial

Anthony B El-Khoveiry, "Bruno Sangro," Thomas Yau, Todd S Crocenzi, Masatashi Kudo, Chiun Hsu, Tae-Yau Kim, Su-Pin Choo, Jörg Trojan, Theodore H Welling 3rd, Tim Meyer, Yoon-Koo Kang, Winnie Yeo, Akhil Chopra, Jeffrey Anderson, Christine dela Cruz, Lixin Lang, Jaclyn Neely, Hao Tang, Homa B Dastani, Ignacio Melero

180

El-Khoueiry et al, Lancet 2017

Translation into survival benefit ?

Overall Survival by Best Overall Response in All Patients

Median OS was 15.1 months (95% CI, 13.2–18.8) in the overall analysis population (N = 154)

Meyer et al, EASL 2018

Summary

- ✓ Advances in ablative techniques offer new aggressive therapeutic managements for large and locally advanced tumors which can be treated in a curative approach.
- ✓ Several systemic therapies are now available and allow management of patients in first and second lines. However, no biomarkers are available to predict response and select the optimal candidates for a given molecule.
- ✓ Immunotherapy is emerging and might become the backbone for combined therapy.

French phase 2 trial

- Academic trial supported by BMS
- Coordinating investigator: **Pr Pierre Nahon**

ClinicalTrials.gov ID: NCT03630640

Nivolep trial

- n=50
- 5 centres

« Curative intent »

(Every 30 days)

Primary Endpoint: local recurrence-free survival