

PHC 2019 14 & 15 January 2019 PARIS - Palais des Congrès

Do DAAs decrease the risk of HCC?

Massimo Levrero

Cancer Research Center of Lyon (CRCL) and INSERM U1052, Lyon, France Hopital de la Croix-Rousse - Hospices Civils de Lyon, Lyon, France

Dipartimento di medicina interna e specialitA' mediche

Disclosures

Advisory Committees or Review Panels:

- BMS
- Jansen
- Gilead
- Arbutus
- Galapagos
- Assembly Pharma
- Sanofi/Aventis

Speaking and Teaching: - MSD

- Roche
- BMS
- Jansen
- Gilead

Annals of Internal Medicine

Review

Eradication of Hepatitis C Virus Infection and the Development of Hepatocellular Carcinoma

A Meta-analysis of Observational Studies

Rebecca L. Morgan, MPH; Brittney Baack, MPH; Bryce D. Smith, PhD; Anthony Yartel, MPH; Marc Pitasi, BS; and Yngve Falck-Ytter, MD

Forest Plot Of Adjusted Hazard Effects In Persons At All Stages Of Fibrosis

Study, Year (Reference)	log(Hazard Ratio)	SE	Т	otal	Weight, %	Hazard Ratio	Ha	zard Ratio
			SVR	NR		IV, Random (95% C) IV, Rar	idom (95% CI)
							- 1	
Asahina et al, 2010 (36)	-0.944	0.388	686	1356	9.2	0.39 (0.18–0.83)		
Hung et al, 2011 (46)	-1.423	0.273	1027	443	15.3	0.24 (0.14–0.41)		
Kawamura et al, 2010 (50)	-1.985	0.407	1081	977	8.5	0.14 (0.06–0.31)	_ - -	
Kramer et al, 2011 (27)	-1.182	0.126	4292	10 276	31.2	0.31 (0.24–0.39)	-	
Kurokawa et al, 2009 (51)	-1.277	0.631	139	264	4.0	0.28 (0.08–0.96)		
Okanoue et al, 2002 (53)	-2.294	0.512	375	586	5.8	0.10 (0.04–0.28)	_ -	
Osaki et al, 2012 (50)	-2.130	1.053	185	197	1.5	0.12 (0.02–0.94)		
Pradat et al, 2007 (17)	-2.481	1.132	87	103	1.3	0.08 (0.01–0.77)	←	
Sinn et al, 2008 (56)	-1.246	0.596	296	194	4.4	0.29 (0.09–0.93)		
Takahashi et al, 2011 (57)	-3.022	1.163	89	114	1.3	0.05 (0.00–0.48)	←	
Tateyama et al, 2011 (58)	-1.968	0.537	139	234	5.3	0.14 (0.05–0.40)	- _	
Yoshida et al, 1999 (61)	-1.164	0.324	789	1568	12.1	0.31 (0.17–0.59)		
Total			9185	16 312	100.0	0.24 (0.18–0.31)	•	
Heterogeneity: tau-squ	are = 0.04; chi-squar	re = 14.05	; <i>P</i> = 0.2	3; <i>1</i> ² = 22%	0			
Test for overall effect: Z	['] = 10.80; <i>P</i> < 0.001						0.01 0.1 1	10 100
							Favors SVR	Favors NR

Annals of Internal Medicine

Eradication of Hepatitis C Virus Infection and the Development of Hepatocellular Carcinoma

A Meta-analysis of Observational Studies

Rebecca L. Morgan, MPH; Brittney Baack, MPH; Bryce D. Smith, PhD; Anthony Yartel, MPH; Marc Pitasi, BS; and Yngve Falck-Ytter, MD

Figure 2. Forest plot of adjusted hazard effects in persons with advanced liver disease.

quality.

	d Ratio	
SVR NR IV, Random (95% CI) IV, Randon	n (95% CI)	
Braks et al, 2007 (37) -1.966 0.601 37 76 11.2 0.14 (0.04–0.45)		
Bruno et al, 2007 (38) -0.954 0.425 124 759 22.4 0.39 (0.17–0.89)		
Cardoso et al, 2010 (40) -1.120 0.514 103 204 15.3 0.33 (0.12-0.89)		
Hasegawa et al, 2007 (64) -1.690 0.755 48 57 7.1 0.18 (0.04–0.81) -		
Hung et al, 2006 (65) -1.468 0.622 73 59 10.4 0.23 (0.07–0.78) -		
Morgan et al, 2010 (52) -1.721 0.764 140 309 6.9 0.18 (0.04-0.80)		
van der Meer et al, 2012 (63) -1.592 0.416 192 338 23.4 0.20 (0.09-0.46)		
Velosa et al, 2011 (60) -2.433 1.108 39 91 3.3 0.09 (0.01-0.77)		
Total 756 1893 100.0 0.23 (0.16–0.35)		
Heterogeneity: tau-square = 0.00; chl-square = 3.64; P = 0.82; I ² = 0%	1	T
Test for overall effect: Z = 7.21; P < 0.001 0.01 0.1 1	10	100
Favors SVR	Favors NR	
Conclusion: Sustained virologic response after treatment among		
HCV-infected persons at any stage of fibrosis is associated with		
reduced HCC. The evidence was determined to be of moderate		

Meta-analysis: interferon improves outcomes <u>following ablation</u> or resection of hepatocellular carcinoma

A. K. Singal*, D. H. Freeman Jr † & B. S. Anand ‡

10 studies (5 randomized) were included treating initial HCC with resection (3 studies), ablation (5 studies) and ablation + resection (2 studies)

	Interf	eron	Cor	ntrol		Odds ratio	Odds	ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Yea	r M-H, Rand	om, 95% Cl
Ikeda <i>et al</i> .	1	10	7	10	4.2%	0.05 [0.00, 0.56] 2000	o ←	
Suou <i>et al.</i>	4	18	18	22	8.6%	0.06 [0.01, 0.30] 200	1	
Kubo <i>et al.</i>	9	15	13	15	6.9%	0.23 [0.04, 1.41] 2002	2	<u> </u>
Shiratori <i>et al.</i>	40	49	23	25	8.2%	0.39 [0.08, 1.94] 2003	3	
Lin <i>et al.</i>	5	8	5	6	3.9%	0.33 [0.03, 4.40] 2003	3	
Sakaguchi <i>et al.</i>	6	24	25	33	11.8%	0.11 [0.03, 0.36] 200	5	
Hung <i>et al.</i>	11	16	27	33	10.1%	0.49 [0.12, 1.94] 200	5	
Mazzaferro et al.	57	76	70	74	12.8%	0.17 [0.06, 0.53] 2006	6	
Jeong <i>et al</i> .	28	42	32	42	15.2%	0.63 [0.24, 1.63] 2007	7	<u> </u>
Kudo <i>et al.</i>	24	43	60	84	18.3%	0.51 [0.23, 1.09] 200	7	_
Total (95% CI)		301		344	100.0%	0.26 [0.15, 0.45]	•	
Total events	185		280					
Heterogeneity: Tau ² =	0.27; Chi	² = 14.4	41, df = 9	(P = 0.1)	.11); / ² = 3	3%		
Test for overall effect:	Z = 4.84	(<i>P</i> < 0.0	00001)				0.01 0.1 Favours interferon	1 10 100 Favours control
							avours interieron	r avours control

Benefit of IFN in reducing the risk of HCC recurrence. However, this strategy was not included in HCC guidelines. - In hepatitis C virus (HCV) infection, all-cause mortality and the risk of HCC occurrence are reduced among patients who achieved sustained virologic response (SVR) with interferon (IFN) - based therapies; 1

- patients with cirrhosis acquired a reduced HCC incidence after SVR, even if a relevant risk remains. 1,2

- there is no conclusive evidence that IFN-based therapy can prevent or delay HCC recurrence after curative HCC treatment. 3

3

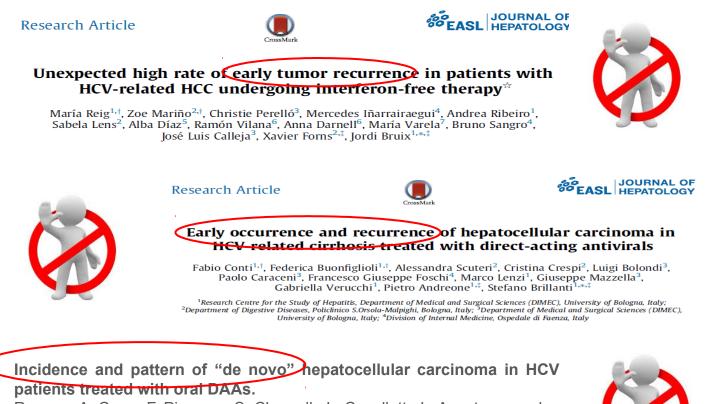
1. Morgan et al. Ann Intern Med. 2013

2. Di Marco et al. Gastroenterology 2016

3. EASL-EORTC guidelines: management of HCC. J Hepatol. 2012

Semantics of Hepatocellular Carcinoma (HCC)

OCCURRENCE (developement): De novo appearance of HCC in a subject (with or without liver disease) with no history or previous evidence of a liver tumor (INTERMEDIATE RISK)


RECURRENCE: Reappearance of HCC in a subject (with or without liver disease) with a previous HCC judged to be radically cured by any technique (TACE, RFTA, resection,...) (HIGH RISK)

DAAs for HCV infection

- Direct-acting antivirals (DAAs) have revolutionised the treatment of hepatitis C virus (HCV) infection, with very high rates (>90%) of SVR, very few contraindications and low rate of adverse events;

- However, there are no data from RCTs on the effect of HCV eradication by DAAs in patients with advanced or decompensated liver disease, and in patients who were successfully treated for HCC.

2016: relevant alarm from "field-practice" studies!

Romano A, Capra F, Piovesan S, Chemello L, Cavalletto L, Anastassopoulos G, et al. Hepatology 2016; 64: Abstract 19.

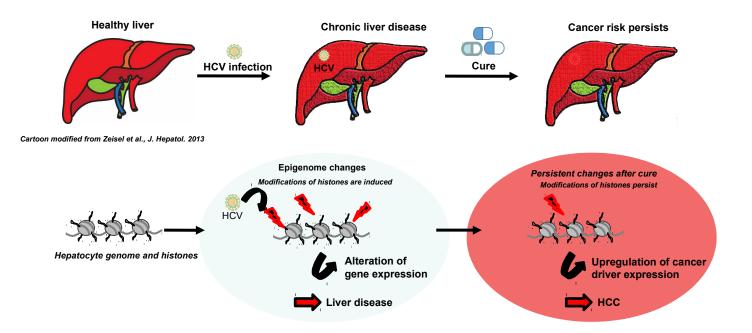
DDA, SVR and HCC

- (Early) HCC occurrence
- HCC pattern
- (Early) HCC recurrence

Research Article

Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals

Fabio Conti^{1,†}, Federica Buonfiglioli^{1,†}, Alessandra Scuteri², Cristina Crespi², Luigi Bolondi³, Paolo Caraceni³, Francesco Giuseppe Foschi⁴, Marco Lenzi¹, Giuseppe Mazzella³, Gabriella Verucchi¹, Pietro Andreone^{1,‡}, Stefano Brillanti^{1,*,‡}


¹Research Centre for the Study of Hepatitis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Italy; ²Department of Digestive Diseases, Policlinico S.Orsola-Malpighi, Bologna, Italy; ³Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Italy; ⁴Division of Internal Medicine, Ospedale di Faenza, Italy

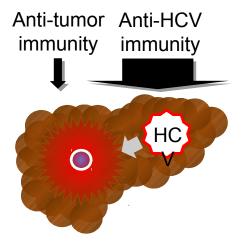
During the 24-week post-treatment evaluation HCC occurrence rate was 3,1% (9/285).

- Retrospective study
- Short follow-up
- No control group
- Crude (not actuarial) rate

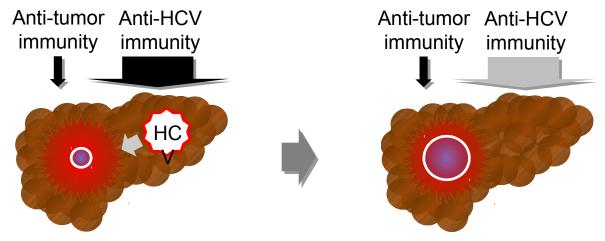
DAAs and cancer risk: Viral cure does not eliminate HCV-induced epigenetic changes

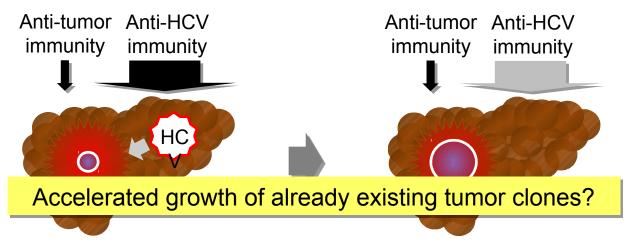
Hepatitis C virus-induced epigenetic and transcriptional changes persist post cure

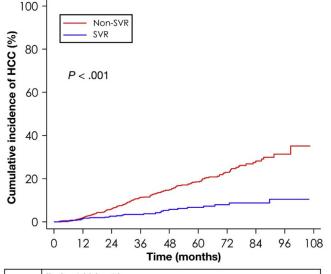
F. Jühling^{1,2}, S. Bandiera^{1,2}, N. Hamdane^{1,2}, C. Thumann^{1,2}, S.C. Durand^{1,2}, H.E. Saghire^{1,2}, I. Davidson^{3,4,5}, F. Habersetzer^{1,6}, P. Pessaux^{1,6}, N. Bardeesy⁷, C. Schmidl^{8,9,10}, C. Bock^{8,9,10}, Y. Hoshida¹¹, M.B. Zeisel^{1,2}, T.F. Baumert^{1,2,6}. Journal of Hepatology **2017** vol. 66 | S1–S32


• Quick resolution of anti-HCV immune response (memory T cell de-differentiation, restoration of CD4, CD8 T cells, deactivation of NK cells)

- Quick resolution of anti-HCV immune response (memory T cell de-differentiation, restoration of CD4, CD8 T cells, deactivation of NK cells)
- Simultaneously diminished immune response to other viruses

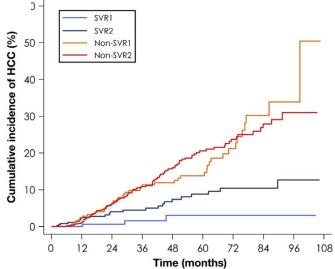

- Quick resolution of anti-HCV immune response (memory T cell de-differentiation, restoration of CD4, CD8 T cells, deactivation of NK cells)
- Simultaneously diminished immune response to other viruses


- Quick resolution of anti-HCV immune response (memory T cell de-differentiation, restoration of CD4, CD8 T cells, deactivation of NK cells)
- Simultaneously diminished immune response to other viruses

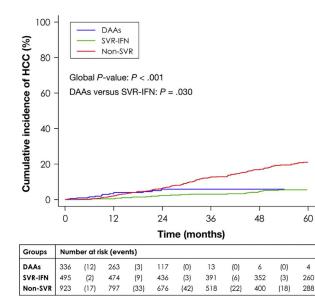

- Quick resolution of anti-HCV immune response (memory T cell de-differentiation, restoration of CD4, CD8 T cells, deactivation of NK cells)
- Simultaneously diminished immune response to other viruses

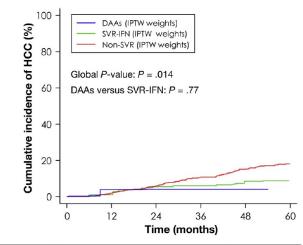
Eradication of Hepatitis C Virus Infection in Patients With Cirrhosis Reduces Risk of Liver and Non-Liver Complications

Pierre Nahon,^{1,2,3} Valérie Bourcier,¹ Richard Layese,⁴ Etienne Audureau,⁴ Carole Cagnot,⁵ Patrick Marcellin,⁶ Dominique Guyader,⁷ Hélène Fontaine,⁸ Dominique Larrey,⁹ Victor De Lédinghen,¹⁰ Denis Ouzan,¹¹ Fabien Zoulim,¹² Dominique Roulot,¹³ Albert Tran,^{14,15} Jean-Pierre Bronowicki,¹⁶ Jean-Pierre Zarski,¹⁷ Vincent Leroy,¹⁷ Ghassan Riachi,¹⁸ Paul Calès,¹⁹ Jean-Marie Péron,²⁰ Laurent Alric,²¹ Marc Bourlière,²² Philippe Mathurin,²³ Sébastien Dharancy,²³ Jean-Frédéric Blanc,²⁴ Armand Abergel,²⁵ Lawrence Serfaty,²⁶ Ariane Mallat,²⁷ Jean-Didier Grangé,²⁸ Pierre Attali,²⁹ Yannick Bacq,³⁰ Claire Wartelle,³¹ Thông Dao,³² Yves Benhamou,³³ Christophe Pilette,³⁴ Christine Silvain,³⁵ Christos Christidis,³⁶ Dominique Capron,³⁷ Brigitte Bernard-Chabert,³⁸ David Zucman,³⁹ Vincent Di Martino,⁴⁰ Vincent Thibaut,⁴¹ Dominique Salmon,⁴² Marianne Ziol,^{2,3,43,44} Angela Sutton,^{44,45,46} Stanislas Pol,^{8,47} and Françoise Roudot-Thoraval,⁴ for the ANRS CO12 CirVir Group


	umber at risk (events)									
Non-SVR	1033 (17) 866 (34) 731 (38) 562 (20) 447 (17) 311 (14) 192 (10) 99 (3) 26 (1) 2]								
SVR	653 (8) 483 (5) 381 (3) 296 (6) 221 (2) 174 (2) 123 (1) 73 (1) 30 (0) 3									

Gastroenterology 2017;152:142–156


Patients with metabolic features BMI \geq 25 kg/m2 and/or diabetes and/or dyslipidemia.

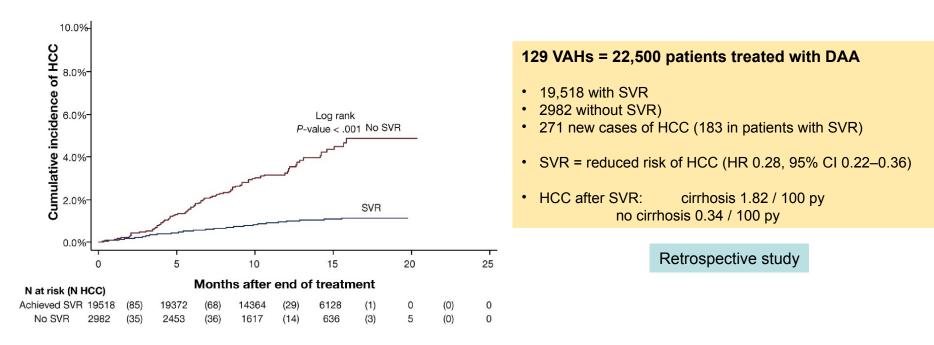

	Num	Number at risk (events)																	
SVR1	208	(0)	152	(1)	118	(1)	89	(1)	59	(0)	40	(0)	25	(0)	15	(0)	8	(0)	2
SVR2	378	(8)	289	(4)	230	(1)	186	(5)	147	(2)	121	(2)	91	(0)	56	(1)	22	(0)	1
Non-SVR1																			0
Non-SVR2	624	(6)	524	(25)	447	(21)	342	(18)	272	(13)	187	(6)	126	(5)	71	(2)	20	(0)	2

Incidence of Hepatocellular Carcinoma After Direct Antiviral Therapy for HCV in Patients With Cirrhosis Included in Surveillance Programs

Pierre Nahon,^{1,2,3} Richard Layese,⁴ Valérie Bourcier,¹ Carole Cagnot,⁵ Patrick Marcellin,⁶ Dominique Guyader,⁷ Stanislas Pol,^{8,9} Dominique Larrey,¹⁰ Victor De Lédinghen,¹¹ Denis Ouzan,¹² Fabien Zoulim,¹³ Dominique Roulot,¹⁴ Albert Tran,^{15,16} Jean-Pierre Bronowicki,¹⁷ Jean-Pierre Zarski,¹⁸ Ghassan Riachi,¹⁹ Paul Calès,²⁰ Jean-Marie Péron,²¹ Laurent Alric,²² Marc Bourlière,²³ Philippe Mathurin,²⁴ Jean-Frédéric Blanc,²⁵ Armand Abergel,²⁶ Lawrence Serfaty,²⁷ Ariane Mallat,²⁸ Jean-Didier Grangé,²⁹ Pierre Attali,³⁰ Yannick Bacq,³¹ Claire Wartelle,³² Thông Dao,³³ Dominique Thabut,³⁴ Christophe Pilette,³⁵ Christine Silvain,³⁶ Christos Christidis,³⁷ Eric Nguyen-Khac,³⁸ Brigitte Bernard-Chabert,³⁹ David Zucman,⁴⁰ Vincent Di Martino,⁴¹ Angela Sutton,^{42,43,44} Françoise Roudot-Thoraval,⁴ and Etienne Audureau,⁴ for the ANRS CO12 CirVir Group

Gastroenterology

Groups	Number at risk (events)											
DAAs (IPTW weights)	956	698	384	92	53	43						
SVR-IFN (IPTW weights)	1076	1043	965	849	771	532						
Non-SVR (IPTW weights)	1029	892	760	613	478	357						


Inverse probability of treatment and censoring weights (IPTCW)

Gastroenterology 2018;155:1436–1450

Risk of Hepatocellular Cancer in HCV Patients Treated With Direct-Acting Antiviral Agents

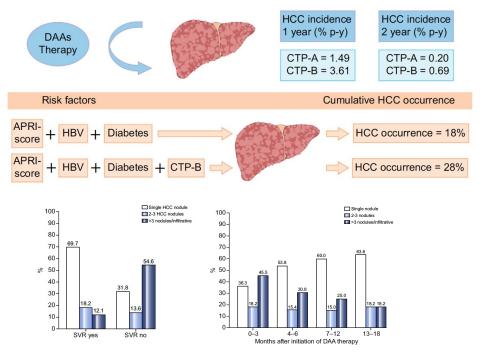
Fasiha Kanwal,^{1,2,3} Jennifer Kramer,^{1,3} Steven M. Asch,^{4,5} Maneerat Chayanupatkul,² Yumei Cao,³ and Hashem B. El-Serag^{1,2,3}

Impact of Sustained Virologic Response With Direct-Acting Antiviral Treatment on Mortality in Patients With Advanced Liver Disease

Lisa I. Backus, Pamela S. Belperio, Troy A. Shahoumian, and Larry A. Mole

Patients with HCV infection, FIB-4 > 3.25 in VA HCV Clinical Case Registry (N = 15,059)

- 1,067 patients did not achieve SVR (no SVR)
- 13,992 patients achieved SVR
- follow-up 1.6 years


SVR with DAA therapy significantly lowered incident HCC by 84%

Retrospective study

Newly diagnosed hepatocellular carcinoma in patients with advanced hepatitis C treated with DAAs: A prospective population study

Antonietta Romano¹, Paolo Angeli¹, Sara Piovesan², Franco Noventa², Georgios Anastassopoulos², Liliana Chemello¹, Luisa Cavalletto¹, Martina Gambato³, Francesco Paolo Russo³, Patrizia Burra³, Valter Vincenzi⁴, Pier Giorgio Scotton⁵, Sandro Panese⁶, Diego Tempesta⁷, Tosca Bertin⁸, Maurizio Carrara⁹, Antonio Carlotto¹⁰, Franco Capra¹¹, Giada Carolo¹², Giovanna Scroccaro¹³, Alfredo Alberti^{2,*}

Journal of Hepatology **2018** vol. 69 | 345–352

NAVIGATORE Platform

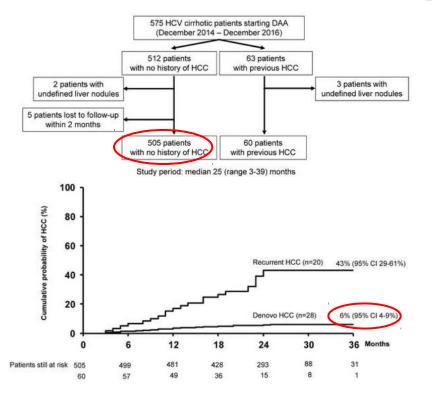
HCC incidence

- first year: 0.46% (95% CI 0.12–1.17) in F3, 1.49% (1.03–2.08) in CTP-A 3.61% (1.86–6.31) in CTP-B
- second year 0%, 0.2%, 0.69%

Multivariate analysis,

aspartate AST/platelet ratio ≥2.5 (HR 2.03; 1.14–3.61; p = 0.016) HBV co-infection (HR 3.99; 1.24–12.91; p = 0.021)

no SVR (HR 9.09; 5.2–16.1; p = 0.0001)

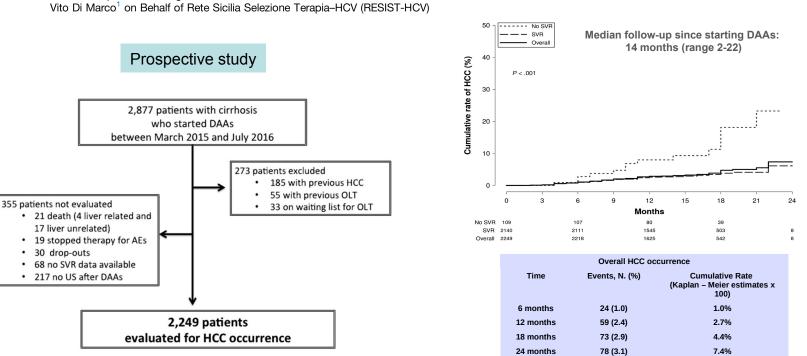

29% of patients with HCC had an aggressive tumor, often seen in the early phase of treatment.

- Prospective study
- Follow-up: 536.2 ± 197.6 days (median 523 days)

Factors Associated With Increased Risk of De Novo or Recurrent Hepatocellular Carcinoma in Patients With Cirrhosis Treated With Direct-Acting Antivirals for HCV Infection

Elisabetta Degasperi,* Roberta D'Ambrosio,* Massimo Iavarone,* Angelo Sangiovanni,* Alessio Aghemo,^{‡,§} Roberta Soffredini,* Marta Borghi,* Giovanna Lunghi,^{||} Massimo Colombo,[§] and Pietro Lampertico*

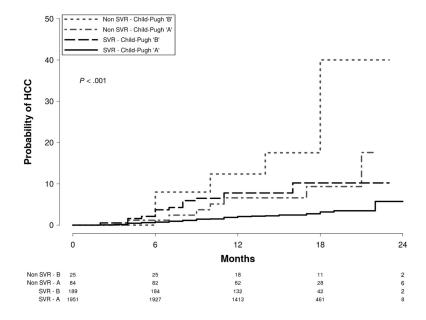
De novo HCC :


- 75% had a single tumor
- 82% of these were Barcelona liver cancer stage 0–A
- alpha-fetoprotein (median): 6 ng/mL (range, 1.0–9240 ng/mL)
- male sex (HR, 6.17; 95% CI, 1.44-26.47; P = .01)
- diabetes (HR, 2.52; 95% CI, 1.08–5.87; P = .03)
- LSM (HR, 1.03; 95% CI, 1.01 £1.06; P = .01)
- FIB-4 score (HR, 1.08; 95% CI, 1.01–1.14; P = .01)
 - Retrospective study
 - Short follow-up
 - No control group

Degasperi E. et al. GC&H. In press

Incidence of Hepatocellular Carcinoma in Patients With HCV-Associated Cirrhosis Treated With Direct-Acting Antiviral Agents

Vincenza Calvaruso,¹ Giuseppe Cabibbo,¹ Irene Cacciola,² Salvatore Petta,¹ Salvatore Madonia,³ Alessandro Bellia,⁴ Fabio Tinè,⁵ Marco Distefano,⁶ Anna Licata,⁷ Lydia Giannitrapani,⁷ Tullio Prestileo,⁸ Giovanni Mazzola,⁹ Maria Antonietta Di Rosolini,¹⁰ Licia Larocca,¹¹ Gaetano Bertino,¹² Antonio Digiacomo,¹³ Francesco Benanti,¹⁴ Luigi Guarneri,¹⁵ Alfonso Averna,¹⁶ Carmelo Iacobello,¹⁷ Antonio Magro,¹⁸ Ignazio Scalisi,¹⁹ Fabio Cartabellotta,²⁰ Francesca Savalli,²¹ Marco Barbara,¹ Antonio Davì,¹⁰ Maurizio Russello,⁴ Gaetano Scifo,⁶ Giovanni Squadrito,² Calogero Cammà,¹ Giovanni Raimondo,² Antonio Craxì,¹ and Vito Di Marco¹ on Behalf of Rete Sicilia Selezione Terapia–HCV (RESIST-HCV)



Gastroenterology 2018;155:411–421

Incidence of Hepatocellular Carcinoma in Patients With HCV-Associated Cirrhosis Treated With Direct-Acting Antiviral Agents

Vincenza Calvaruso,¹ Giuseppe Cabibbo,¹ Irene Cacciola,² Salvatore Petta,¹ Salvatore Madonia,³ Alessandro Bellia,⁴ Fabio Tinè,⁵ Marco Distefano,⁶ Anna Licata,⁷ Lydia Giannitrapani,⁷ Tullio Prestileo,⁸ Giovanni Mazzola,⁹ Maria Antonietta Di Rosolini,¹⁰ Licia Larocca,¹¹ Gaetano Bertino,¹² Antonio Digiacomo,¹³ Francesco Benanti,¹⁴ Luigi Guarneri,¹⁵ Alfonso Averna,¹⁶ Carmelo Iacobello,¹⁷ Antonio Magro,¹⁸ Ignazio Scalisi,¹⁹ Fabio Cartabellotta,²⁰ Francesca Savalli,²¹ Marco Barbara,¹ Antonio Davì,¹⁰ Maurizio Russello,⁴ Gaetano Scifo,⁶ Giovanni Squadrito,² Calogero Cammà,¹ Giovanni Raimondo,² Antonio Craxì,¹ and Vito Di Marco¹ on Behalf of Rete Sicilia Selezione Terapia–HCV (RESIST-HCV)

	Multi	variate Cox re	gression
	HR	95% CI	P value
Albumin \geq 3.5 vs <3.5 mg/dL Platelet count \geq 120 vs <120 \times 10 ³ /dL	1.77 3.97	1.12–2.82 2.23–7.09	.015 <.001
$\leq 120 \times 1070L$ SVR ₁₂ vs no SVR ₁₂	3.40	1.89–6.12	<.001

Gastroenterology 2018;155:411-421

Multivariate Cay regression

EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma 2018

- ✓ Once cirrhosis has been established, antiviral therapy is beneficial in preventing cirrhosis progression and decompensation.
- Successful antiviral therapy reduces but does not eliminate, the risk of HCC development (evidence moderate). Antiviral therapies should follow EASL guidelines for the management of chronic HCV infection.
- ✓ HCC occurrence or recurrence is different between patients receiving DAA or IFN therapy
- ✓ The HCC occurrence rate after DAA-therapy may be due to the broader spectrum of patients receiving antiviral therapy in the DAA era: more patients with a higher risk of developing HCC are treated (more advanced stages of cirrhosis, in unselected Child Pugh B class or with significant portal hypertension) since DAA therapy can be offered to patients with more advanced liver disease who would not have been considered suitable for IFN treatment.

DDA, SVR and HCC

- (Early) HCC occurrence
- HCC pattern
- (Early) HCC recurrence

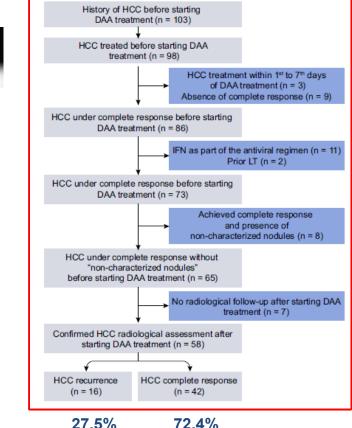
Risk of HCC recurrence after DAAs

		Number	of patients, n			HCC recurr	ence, n (%)	Conclusion: Did DAAs accelerate recurrence?
Study	Method	DAA	Control	Last treatment of HCC	Median observation period (months)	DAA	Control	
Reig, 2016 ¹¹	Retrospective	58	0	Resection, ablation, or TACE	5.7	16 (27.6)	-	Yes
ANRS CO22, 2016 ⁸	Retrospective	189	78 (no treatment)	Resection or ablation	21.6 (DAA), 26.1 (no treatment)	24(12.7)	16 (20.5)	No
ANRS CO12, 2016 ⁸	Retrospective	13	66 (no treatment)	Resection or ablation	21,3 (all patients)	1 (7.7)	31 (47.0)	No
ANRS CO23, 2016 ⁸	Retrospective	314	0	Transplantation	7 (mean)	7 (2.2)	-	No
Conti, 2016 ¹⁰	Retrospective	59	0	Resection, ablation, PEI, or TACE	37 (with Rec.*),12 (without Rec. [†])	17 (28.8)	-	Yes
Minami, 2016 ¹²	Retrospective	27	38 (IFN), 861 (no treatment)	Ablation	16 (DAA), 36 (IFN, no treatment)	8 (29,6)	26 (68.4) (IFN), 553 (64.2) (no treatment) at 3 years	No
Torres, 2016 ¹⁵	Prospective	8	0	proton therapy	12	0 (0)	-	No
Zeng, 2016 ¹⁶	Retrospective	8	0	Ablation	15	0 (0)	-	No
Cabibbo, 2017 ⁹⁴	Prospective	143	0	Resection, ablation, or TACE	8.7	29 (20,3)	-	No
Ikeda, 2017 ^{17,‡}	Retrospective	177	89 (no treatment)	Resection, ablation, TACE or PRT	20,7 (DAA, No treatment)	30,1% (12 months) 38,9% (24 months)	25% (12 months), 46.5% (24 months)	No
Kolly, 2017 ¹⁸	Retrospective	47	0	Resection, ablation,or TACE	9.6	Disease-free rate 77% (6 months), 58% (12 months)	-	No
Nagata, 2017 ¹⁹	Retrospective	83	60 (IFN)	Resection or ablation	28 (SVR DAA [§]), 74 (SVR IFN ^{II})	22,9% (SVR), 40% (Non-SVR) at 3 years	47.1% (SVR), 77.1% (Non-SVR) at 5 years	No
Petta, 2017 ²⁰	Retrospective	58 (SVR DAA [§])	57 (SVR IFN ¹) 328 (HCV active [¶])	Resection or ablation	18 (SVR DAA [§]), 34 (SVR IFN ¹), 17 (HCV active [§])	16 (27.6)	22 (38.6) (SVR IFN [†]), 142 (43.3) (HCV active [‡])	No
Virlogeux, 2017 ²¹	Retrospective	23	45 (no treatment)	Resection, ablation, TACE, or combination	17.4 (DAA with Rec*), 10.1 (No treatment with Rec [†]), 35.7 (DAA without Rec*), 15.4 (No treatment without Rec [†])	11 (47.8)	33 (73.3)	No
Zavaglia, 2017 ²²	Retrospective	31	0	Resection, ablation, or TACE	8	1 (3.2)	-	No
Kinoshita (The current study)‡	Retrospective	147	156 (IFN)	Ablation	22 (DAA), 86 (IFN)	80 (544)	136 (87.2)	No

Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing IFN-free therapy

Research Article

EASL JOURNAL OF


Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy $\!\!\!\!\!^{\star}$

María Reig^{1,†}, Zoe Mariño^{2,†}, Christie Perelló³, Mercedes Iñarrairaegui⁴, Andrea Ribeiro¹, Sabela Lens², Alba Díaz⁵, Ramón Vilana⁶, Anna Darnell⁶, María Varela⁷, Bruno Sangro⁴, José Luis Calleja³, Xavier Forns^{2,‡}, Jordi Bruix^{1,*,‡}

HCC recurrence rate of almost 28%

- Multicenter, retrospective study
- Small population (16 HCC in 58 pts)
- Short follow-up (5.7 mo, range 0.4-24.6)
- Crude (not actuarial) rate

Reig M. J Hepatol. 2016

Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing IFN-free therapy

Research Article

EASL HEPATOLOGY

Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy $\!\!\!\!^{\star}$

María Reig^{1,†}, Zoe Mariño^{2,†}, Christie Perelló³, Mercedes Iñarrairaegui⁴, Andrea Ribeiro¹, Sabela Lens², Alba Díaz⁵, Ramón Vilana⁶, Anna Darnell⁶, María Varela⁷, Bruno Sangro⁴, José Luis Calleja³, Xavier Forns^{2,‡}, Jordi Bruix^{1,*,‡}

HCC recurrence rate of almost 28%

- Multicenter, retrospective study
- Small population (16 HCC in 58 pts)
- Short follow-up (5.7 mo, range 0.4-24.6)
- Crude (not actuarial) rate

Reig M. J Hepatol. 2016

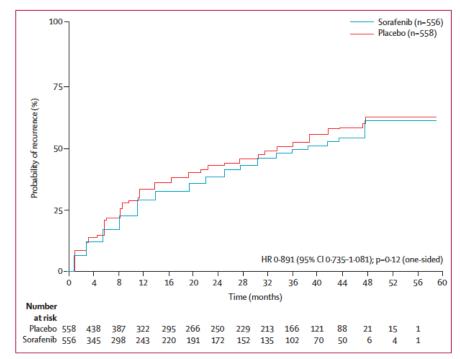
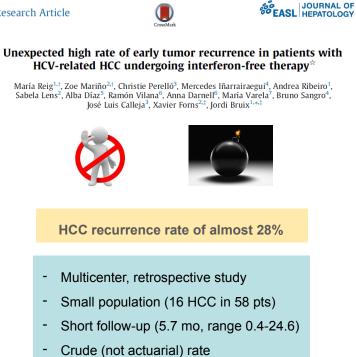
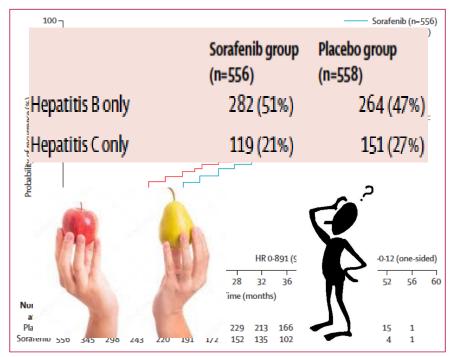



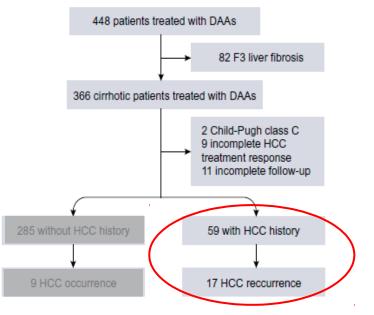
Figure 3: Kaplan-Meier analysis of time to recurrence based on independent assessment HR=hazard ratio.

Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing IFN-free therapy

Research Article

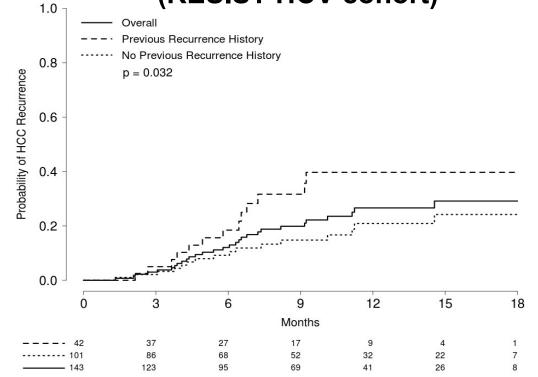
Reig M. J Hepatol. 2016




Figure 3: Kaplan-Meier analysis of time to recurrence based on independent assessment HR=hazard ratio.

Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals

Fabio Conti^{1,†}, Federica Buonfiglioli^{1,†}, Alessandra Scuteri², Cristina Crespi², Luigi Bolondi³, Paolo Caraceni³, Francesco Giuseppe Foschi⁴, Marco Lenzi¹, Giuseppe Mazzella³, Gabriella Verucchi¹, Pietro Andreone^{1,‡}, Stefano Brillanti^{1,*,‡}


¹Research Centre for the Study of Hepatitis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Italy; ²Department of Digestive Diseases, Policlinico S.Orsola-Malpighi, Bologna, Italy; ³Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Italy; ⁴Division of Internal Medicine, Ospedale di Faenza, Italy

During the 24-week post-treatment evaluation HCC recurrence rate was 28.8 % (17/59).

- Retrospective study
- Short follow-up
- No control group
- Crude (not actuarial) rate

Early Recurrence of Hepatocellular Carcinoma (RESIST-HCV cohort)

Overall 6-12- and 18-month HCC recurrence rate: 12%, 26.6% and 29.1% respectively.

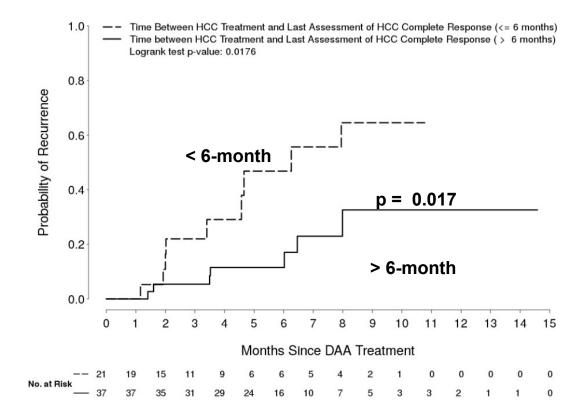
G. Cabibbo et al. Aliment Pharmacol Ther. 2017;46:688-695.

Lack of evidence of an effect of direct-acting antivirals on the recurrence of hepatocellular carcinoma: Data from three ANRS cohorts

The ANRS collaborative study group on hepatocellular carcinoma (ANRS CO22 HEPATHER, CO12 CirVir and CO23 CUPILT cohorts)*

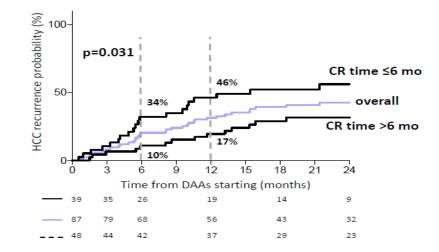
Cohort ANRS	N with HCC	N with HCC treated with DAA	HCC Recurrence Rate in DAA –treated group per 100 person-months	HCC Recurren No-DAA grou person-m	ip per 100											
HEPATHER	267	189	0.73	0.66	5											
CIRVIR	79	13	1.11	1.73	3				Re	atroc	ener	tive	etu	dv		
CUPILT (LT)	314	314	3.1						1.0	2003	spec		Stu	uy		
(resectio	n, RFA, I	LT)	es with curative pote HCC recurrence in I		9.0 9.0 Survival probability 5.0 Survival probability 5.0 Survival probability 5.0 Survival probability 5.0 Survival probability	8- 6- 4- 2-						C rec		*==	ated (T)	
					Patients (U) at risk (T)	Ó	3 146 179	6 117 169	9 86 163	12 75 148	15 62 124	18 52 102	21 43 73	24 38 28	27 30 7	30 22 2

Pol S, J Hepatol 2016


Months

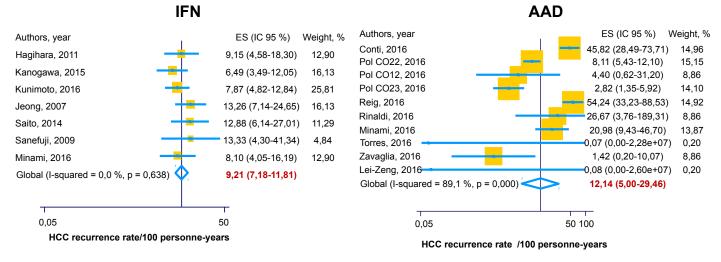
DAA & HCC recurrences: controversies

- Study design (no randomised, retrospective or prospective)
- (Lack of) control group
- Heterogeneous inception point
- Time lag between tumor cure and start of DAA
- Heterogeneous baseline pts and tumor characteristics
- Type of curative HCC treatment
- Assessment of complete radiological response
- HCC recurrence definition (early/late and local/distant)
- Schedules of follow-up after HCC treatment
- History of prior HCC recurrences
- Impact of Competitive risk on survival


Direct antiviral agents and risk for HCC early recurrence: Much ado about nothing

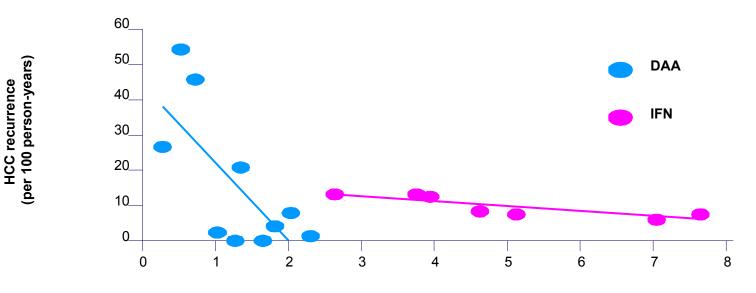
Cammà C, Cabibbo G, Craxì A. J Hepatology 2016

HCC RECURRENCE IN THE NAVIGATORE DATABASE


Results: HCC recurrence from DAAs starting

Patients with complete response (CR) confirmed for more than 6 months before DAAs initiation showed lower early HCC recurrence than those with less than 6 months of CR

HCC Risk after DAAs treatments : meta-analysis


Meta regression of HCC recurrence

	RR non adjusted	RR adjusted	IC 95 %	P value
Average follow-up	0,86	0,79	0,55-1,15	0,19
Average Age	1,11	1,11	0,96-1,27	0,14
Treatment	1,36	0,62	0,11-3,45	0,56

Waziry et al J Hepatol 2017;67:1204- 1212.

HCC Risk after DAAs treatments : meta-analysis

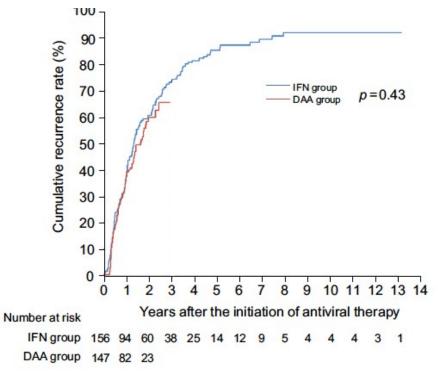
Impact of follow-up on HCC recurrence by average follow-up


Average follow-up (years)

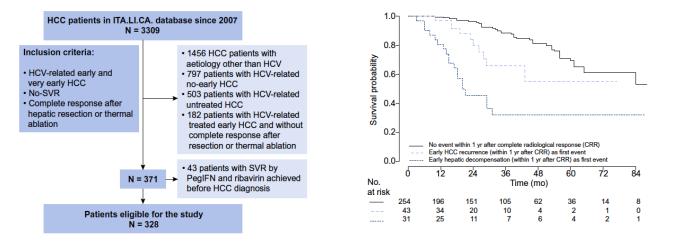
- HCC recurrence decrease with longer follow-up
- No data on HCC severity

SVR as a Predictor of Recurrent HCC in HCV Patients

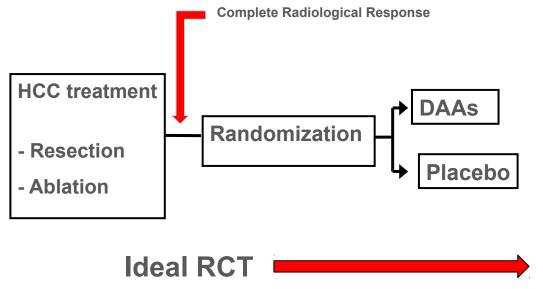
Multicenter, prospective cohort of 1927 patients with HCV cirrhosis, including 161 with previously treated HCC


38/161 patients had a recurrence of HCC; average annual incidence of 24.8%

		Univariate	9	Multivaria	te
		HR (95% CI)	P- value	HR (95% CI)	P-value
Years since HCC	≥12 vs. <12 months	2.20 (1.00-4.83)	0.05	2.09 (0.94-4.61)	0.07
HCC Treatment	Curative vs. palliative	1.32 (0.46-3.76)	0.61	-	
SVR		8.43 (2.85-24.9)	0.0001	5.21 (1.75-15.5)	0.003
Alpha-fetoprotein	≥10 ng/dL	6.32 (1.82-21.9)	0.004	6.19 (1.81-21.2)	0.004


SVR to DAA regimens is associated with a significantly lower rate of recurrence of HCC

Impact of direct-acting antivirals on early recurrence of HCV-related HCC: Comparison with interferon-based therapy


- There was no significant difference in the early HCC recurrence rate and pattern between IFN-based and DAA therapy.
- High AFP-L3, short recurrence-free period, and history of multiple HCC treatments were risk factors for early recurrence.
- Eradication of HCV after curative HCC treatments could preserve liver function, regardless of antiviral therapy regimen.

Hepatic decompensation is the major driver of death in HCV-infected cirrhotic patients with successfully treated early hepatocellular carcinoma

Conclusion: Survival in HCV infected patients with cirrhosis and successfully treated HCC, is mainly influenced by early hepatic decompensation. HCV eradication after treatment with DAA could improve overall survival of HCC patients through long-term preservation of liver function.

"Adjuvant" use of DAAs in successfully treated HCC and HCV related cirrhosis

Endpoints

- Overall Survival
- HCC Recurrence
- Hepatic Decompensation
- Biomarkers
- Other

EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma 2018

R

✓ Patients with HCV-associated cirrhosis and HCC treated by curative intent maintain a high rate of HCC recurrence even after subsequent directly acting antiviral (DAA) therapy. It is presently unclear whether this presents the inherent risk of advanced cirrhosis to develop HCC or if DAA therapy increases recurrence rates. Thus, further research is encouraged.

 \checkmark To adequately assess the risk of HCC recurrence/development it is essential to determine if treated patients were properly screened for HCC before DAA initiation, how and for how long follow-up screening was performed and finally, if the incidence of HCC during follow-up was one of the endpoints of retrospective analysis.

✓ Currently, in these patients close surveillance is advised and the benefit of viral cure must be outweighed against a potentially higher recurrence risk (evidence low; recommendation high).

HCC recurrence after DAAs: the take-home message

- Patients with HCV cirrhosis and a previously cured HCC remain at risk of cancer recurrence after HCV eradication
- The risk of HCC recurrence is lower than in non-eradicated patients, and is proportional to previous HCC recurrence and tumor size
- Preliminary data in patients with previous cured HCC suggest that the response rate to DAAs is excellent and that survival may be higher in SVR patients despite HCC recurrence
- DAAs should not be withheld in these patients

INSERM U1052 - Equipe 23

Massimo Levrero Mirjam Ziesel Marie Laure Plissonnier Francesca Guerrieri Natali Abeywickrama Samarakoon Vincenzo Alfano Oceane Floriot Alexia Paturel Anna Delest Mohamed Ibachi

> Paul Deny Jean Claude Cortay Claude Caron de Fromentel

> > Jean Yves Mabrut Michael Lesurtel Mohkan Kayvan

Lab of Gene Expression

Massimo Levrero Francesca Guerrieri Natalia Pediconi Laura Belloni Ludovica Calvo Debora Salerno

INSERM U1052 – Equipe 15

Fabien Zoulim Barbara Testoni Fanny Lebossé Caroline Scholtes

Financial support

Collaborations:

Jane Mc Keating – Oxford, UK Ourania Andrisani – Purdue IN, USA Maura Dandri - Hamburg, Germany Carlo Ferrari - Parma, IT Letizia Chiodo, Giancarlo Ruocco – Roma, IT Sabrina Strano, Giovanni Blandino – Roma, IT

