Autoimmune Hepatitis

Michael P. Manns

Hannover Medical School
Germany

12th Paris Hepatology Conference, Paris, 14 January 2019
Acknowledgements

Richard Taubert

Elmar Jaeckel
Disclosure of Interest

Falk Pharma GmbH, Freiburg, Germany

Novartis, Basel, Switzerland
Diagnosis of Autoimmune Hepatitis

- Clinical Symptoms
- Biochemistry: ALT, AST, IgG
- Immunological Tests: Autoantibodies
- Genetics
- Histopathology
- Scoring Systems
- Differential Diagnosis
DIAGNOSIS OF AUTOIMMUNE HEPATITIS

- Female gender
- Extrahepatic autoimmune syndromes
- Hypergammaglobulinia (IgG)
- Autoantibodies: ANA, LKM-1, SMA, SLA/LP
- Genetics: HLA DR 3, DR 4, AIRE
- Histology
- Immunsuppressive Therapy
Diagnosis of AIH

Autoantibody Testing by Immunofluorescence

3 rodent tissue sections
- Kidney
- Stomach
- Liver

Hep2 cells

Neutrophils

ANA, SMA, AMA, LKM, LC1

ANA pattern

pANCA/pANNA

others: SLA, ASGPR

Manns et al. AASLD guidelines 2010, EASL CPG 2015
LIVER KIDNEY MIKROSOOMAL Antibodies: LKM
Autoantibodies in Liver Diseases

<table>
<thead>
<tr>
<th>Autoantibodies</th>
<th>Target</th>
<th>Disease association</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANA</td>
<td>multiple nuclear antigens</td>
<td>AIH, SLE, MTCD etc.</td>
</tr>
<tr>
<td>AMA</td>
<td>2-oxo-acid-dehydrogenase complex</td>
<td>PBC</td>
</tr>
<tr>
<td>pANCA</td>
<td>h-Lamp-2, proteinase 3, Actin, troponin, tropomysin</td>
<td>AIH, PSC, PBC, AIH 1</td>
</tr>
<tr>
<td>SMA</td>
<td></td>
<td>AIH 2, HCV</td>
</tr>
<tr>
<td>LKM 1</td>
<td>CYP 2D6</td>
<td>Tienilic acid-induced hepatitis</td>
</tr>
<tr>
<td>LKM 2</td>
<td>CYP 2C9</td>
<td>AIH 2, hepatitis D</td>
</tr>
<tr>
<td>LKM 3</td>
<td>UGT1A</td>
<td>APS-1, hepatitis C</td>
</tr>
<tr>
<td>LKM</td>
<td>CYP 2A6</td>
<td>AIH 2</td>
</tr>
<tr>
<td>LC1</td>
<td>FTCD</td>
<td>AIH 3</td>
</tr>
<tr>
<td>SLA/LP</td>
<td>tRNP(Ser)Sec</td>
<td>Dihydralzine-induced hepatitis, APS-1</td>
</tr>
<tr>
<td>LM</td>
<td>CYP 1A2</td>
<td>Autoimmune liver disease, HCV</td>
</tr>
<tr>
<td>ASGP-R</td>
<td>Asialoglycoproteinrezeptor</td>
<td></td>
</tr>
</tbody>
</table>

Prof. Dr. med. M.P. Manns
Department of Gastroenterology, Hepatology and Endocrinology
14.01.2019
Autoantibodies in the Diagnosis of AIH

Liver disease of unknown origin

ANA, SMA, LMK-1, AMA

ANA+
SMA+
LKM1+
AMA+

AIH

Conventional tests negative

F-actin, SLA/LP, LC1, LKM3, PDH-E2, pANCA

AIH

F-actin +
SLA/LP +
LC1+ LKM3+
PDH-E2+

Negative

Cryptogenic chronic hepatitis

Atypical pANA+

F-actin +
SLA/LP +
LC1+ LKM3+
PDH-E2+

Negative

AIH

PBC

Limitations of Autoantibodies in AIH

<table>
<thead>
<tr>
<th>Condition</th>
<th>ANA</th>
<th>SMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIH</td>
<td>60-85%</td>
<td>60-80%</td>
</tr>
<tr>
<td>NAFLD</td>
<td>12-40%</td>
<td>3-7%</td>
</tr>
<tr>
<td>NASH</td>
<td>20-40%</td>
<td>6-9%</td>
</tr>
<tr>
<td>HBV</td>
<td>15-30%</td>
<td>20-25%</td>
</tr>
<tr>
<td>HCV</td>
<td>9-40%</td>
<td>5-60%</td>
</tr>
<tr>
<td>PBC</td>
<td>20-50%</td>
<td>10%</td>
</tr>
<tr>
<td>PSC</td>
<td>7-70%</td>
<td>13-20%</td>
</tr>
</tbody>
</table>

Meta-Analysis

Zhang et al. *PloS One* 2014

Hausdorff et al.

Clinica Clinica Acta 2009

Hannover retrospective Cohort

n=237-270

Severity Of Autoimmune Hepatitis

Association of liver-related death or transplantation, n=240

No cirrhosis
n=122

Cirrhosis at diagnosis
N=89

Cirrhosis ? Time
N=5

Cirrhosis subsequently
N=24

Overall and LT-free Survival, n=354

Independent Risk Factor
Anti-SLA

Classification Of Autoimmune Hepatitis Based On Autoantibodies

<table>
<thead>
<tr>
<th>Autoimmune hepatitis Type 1</th>
<th>Autoimmune hepatitis Type 2</th>
<th>Autoimmune hepatitis Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANA, SMA</td>
<td>LKM-1, LKM-3, LC-1</td>
<td>SLA/LP</td>
</tr>
</tbody>
</table>

- **Autoimmune hepatitis Type 1**
 - 80% of cases
 - age: 16-30 years
 - slow onset

- **Autoimmune hepatitis Type 2**
 - 20% of cases
 - age: around 10
 - also fulminant cases

- **Autoimmune hepatitis Type 3**
 - similar to type 1
 - more relapse,
 - more difficult to treat

AASLD Clinical Practice Guidelines: Hepatology 2010
Diagnosis of Autoimmune Hepatitis: Histology

Interface hepatitis. Limiting plate of the portal tract is disrupted by a lymphoplasmacytic infiltrate.

Plasma cell infiltration.

Median centrilobular zone 3 necrosis. Centrilobular zone 3 necrosis associated with a mononuclear inflammatory infiltrate.
Autoimmune Hepatitis: Histopathology

- Interface hepatitis
- Plasmacelluar infiltrates
- Hepatocyte rosetting
- Emperipolesis
Autoimmune Hepatitis: Histopathology

- Alone not sufficient for AIH diagnosis

- But essential for diagnosis of AIH
 - Presence of characteristic features
 - Exclusion of other diseases

- Important for Grading and Staging

- Very important before stopping therapy

AIH – Scores

Alvarez et al. J Hepatol. 1999

Hennes et al. Hepatology 2008

<table>
<thead>
<tr>
<th>Feature/parameter</th>
<th>Discriminator</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies (max 2 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANA or SMA+</td>
<td>≥1:40</td>
<td>+1</td>
</tr>
<tr>
<td>ANA or SMA+</td>
<td>≥1:80</td>
<td>+2</td>
</tr>
<tr>
<td>or LKM+</td>
<td>≥1:40</td>
<td>+2</td>
</tr>
<tr>
<td>or SLA/LP+</td>
<td>Any titre</td>
<td>+2</td>
</tr>
<tr>
<td>IgG or γ-globulins level</td>
<td>≥ULN</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>>1.1x ULN</td>
<td>+2</td>
</tr>
<tr>
<td>Liver histology</td>
<td>Compatible with AIH</td>
<td>+1</td>
</tr>
<tr>
<td>(evidence of hepatitis is required)</td>
<td>Typical of AIH</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>Atypical</td>
<td>0</td>
</tr>
<tr>
<td>Absence of viral hepatitis</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>+2</td>
</tr>
</tbody>
</table>

Score ≥7 = Definite AIH
Score ≥6 = Probable AIH

Mieli-Vergani et al. JPGN 2017

For paediatric AIH und AISC
- Lower auto-antibody titer
- Cholangiogram
- Family history for autoimmune diseases

Diagnosis of Autoimmune Hepatitis

• Clinical Symptoms
• Biochemistry: ALT, AST, IgG
• Immunological Tests: Autoantibodies
• Genetics
• Histopathology
• Scoring Systems
• Differential Diagnosis
Nivolumab is a monoclonal immunologically active antibody (IgG4), binding to the Immune-Checkpoint-Receptor (programmed death-1) PD-1 leading to Restoration of T-Cell-Activity.
Treatment of AIH: Endpoints

<table>
<thead>
<tr>
<th>Endpoints</th>
<th>Criteria</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remission</td>
<td>Disappearance of clinical symptoms, Normalization of aminotransferases (ALT, AST), bilirubin und γ-globulins, Normal liver histology or inactive liver cirrhosis</td>
<td>Slow Reduction of steroids within 6 weeks, Control of serum AST, ALT, total-bilirubin, and γ-globulins in 3-week intervals during and 3 months after withdrawal, then every 6 months for 2 years, then every year</td>
</tr>
</tbody>
</table>

Application of the 2010 AASLD criteria of remission to a cohort of Italian patients with autoimmune hepatitis

- **AIH (n=163)**
 - **TREATMENT**
 - Remission n=119 (73%) [AASLD 2002]
 - Remission n=42 (26%) [AASLD 2010]

Remission AIH (>60 months)
- methylprednisolone 2-4 mg/daily or every other day
- N=89
 - 23 (25.8%) Normal ALT [AASLD 2010]
 - 65 (73%) ALT<2xULN [AASLD 2002]
 - 1 (4%) Histological worsening of the disease
 - 36 (54.5%)
AASLD CPG: First Line Treatment of AIH (adults)

<table>
<thead>
<tr>
<th></th>
<th>Monotherapy</th>
<th>Combination Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prednisone</td>
<td>Azathioprine</td>
</tr>
<tr>
<td></td>
<td>(mg/ day)</td>
<td>USA (mg/ day)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EU (mg/ kg/ day)</td>
</tr>
<tr>
<td>Week 1</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Week 2</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Week 3</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1 – 2</td>
</tr>
<tr>
<td>Week 4</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1 – 2</td>
</tr>
<tr>
<td>Maintenance-Therapy</td>
<td>20 and less</td>
<td>10</td>
</tr>
<tr>
<td>Reasons for Choice of Therapy</td>
<td>Cytopenia, Thiopurinmethyl-transferase-Deficiency, Pregnancy, Tumors, Therapy ≤6 Mo</td>
<td>Postmenopausal, Osteoporosis, uncontrolled Diabetes, Hypertension, Obesity, Acne, Emotional Instability</td>
</tr>
</tbody>
</table>

Management of AIH in adults

Mieli-Vergani, G. et al. (2018) Autoimmune hepatitis

Prof. Dr. med. M.P. Manns
Department of Gastroenterology, Hepatology and Endocrinology
14.01.2019
Management of AIH in adults

Differences of high (≥0.5mg/kg) and low (<0.5mg/kg) dose prednisolone regimen during first line therapy

451 AIH patients from 9 centers in 5 European countries treated between 1978 and 2017

Biochemical remission after 6 months:
- ≥0.5mg/kg/day (n=281): 70.5%
- <0.5mg/kg/day (n=170): 64.7%

Cumulative steroid dose over 6 months (mg):
- ≥0.5mg/kg/day: 3780 mg
- <0.5mg/kg/day: 2573 mg

Steroid specific side effects:
- ≥0.5mg/kg/day: 21.3%
- <0.5mg/kg/day: 18.8%

Second Line Therapy for AIH: Alternative Drugs

Safety (Intolerance) versus Efficacy
Frequency and Nature of Side Effects (Adults)

<table>
<thead>
<tr>
<th>Prednisone-Related Side Effects</th>
<th>Frequency</th>
<th>Azathioprine-Related Side Effects</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>Cosmetic (usually mild)</td>
<td></td>
<td>Hematologic (mild)</td>
<td></td>
</tr>
<tr>
<td>Facial rounding, Weight gain, Dorsal hump striae, Hirsutism, Alopecia</td>
<td>80% (after 2 years)</td>
<td>Cytopenia</td>
<td>46% (especially with cirrhosis)</td>
</tr>
<tr>
<td>Somatic (usually mild)</td>
<td></td>
<td>Hematologic (severe)</td>
<td></td>
</tr>
<tr>
<td>Emotional Instability, Glucose intolerance, Cataract</td>
<td>13% (Treatment ending)</td>
<td>Leukopenia</td>
<td></td>
</tr>
<tr>
<td>Hematologic (mild)</td>
<td></td>
<td>Thrombocytopenia</td>
<td></td>
</tr>
<tr>
<td>Somatic (severe)</td>
<td></td>
<td>Somatic (mild)</td>
<td></td>
</tr>
<tr>
<td>Osteopenia, Vertebral compression, Diabetes (brittle), Psychosis, Hypertension (labile)</td>
<td></td>
<td>Nausea, Emesis, Rash, Fever, Arthralgias</td>
<td>5%</td>
</tr>
<tr>
<td>Somatic (severe)</td>
<td></td>
<td>Neoplastic</td>
<td></td>
</tr>
<tr>
<td>Inflammatory/Neoplastic</td>
<td></td>
<td>Hematologic /enteric</td>
<td></td>
</tr>
<tr>
<td>Pancreatitis, Opportunistic infection, Malignancy</td>
<td>Rare</td>
<td>Bone marrow failure, villous atrophy, Malabsorption</td>
<td></td>
</tr>
<tr>
<td>Neoplastic</td>
<td></td>
<td>Teratogenic</td>
<td>Rare (theoretical)</td>
</tr>
</tbody>
</table>

Decrease of Steroid Specific Side Effects in Patients Switched from Prednisone to Budesonide (n=87)

Month 6

Month 12

P<0.0001*

*McNemar’s test for paired proportions
Role of Budesonide

- Instead of Prednisolone to reduce side effects in combination with Azathioprine
 - Induction of remission in risk patients for steroid specific side effects (SSSE)
 - Long-term maintenance of remission

- Approved for AIH in 23 European and 13 Non-European countries
Budesonide Versus Prednisone: Limitations

EDITORIAL:

The right drug at the right time for the right patient

Manns, Jaeckel, Taubert, Clin Gastroenterol Hepatol, 2018
Frequency and Nature of Side Effects (Adults)

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prednisone-Related Side Effects</td>
<td></td>
<td>Azathioprine-Related Side Effects</td>
<td></td>
</tr>
<tr>
<td>Cosmetic (usually mild)</td>
<td>80% (after 2 years)</td>
<td>Hematologic (mild)</td>
<td>46% (especially with cirrhosis)</td>
</tr>
<tr>
<td>Facial rounding, Weight gain, Dorsal hump striae, Hirsutism, Alopecia</td>
<td></td>
<td>Cytopenia</td>
<td></td>
</tr>
<tr>
<td>Somatic (usually mild)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotional Instability, Glukose intolerance, Cataract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somatic (severe)</td>
<td></td>
<td>Hematologic (severe)</td>
<td></td>
</tr>
<tr>
<td>Osteopenia, Vertebral compression, Diabetes (brittle), Psychosis, Hypertension (labile)</td>
<td></td>
<td>Leukopenia</td>
<td>6% (Treatment ending)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammatory/Neoplastic</td>
<td>Rare</td>
<td>Somatic (mild)</td>
<td>5%</td>
</tr>
<tr>
<td>Pancreatitis, Opportunistic infection, Malignancy</td>
<td></td>
<td>Nausea, Emesis, Rash, Fever, Arthralgias</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoplastic</td>
<td>3% (after 10 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämatologic /enteric</td>
<td>Rare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone marrow failure, villous atrophy, Malabsorption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teratogenic</td>
<td>Rare (theoretical)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Routine assessment of thiopurine methyltransferase (IPMT)?

Mycophenolate Mofetil (MMF) as Second Line Therapy – Retrospective Analysis

- MMF in n = 36 patients
 - n = 27 due to AZA intolerance
 - n = 9 due to AZA insufficiency

- Remission: < 2x ULN
- Total Remission to MMF: 14/36 (38 %)
- Remission in AZA intolerant pts: 12/28 (~ 43 %)
- Remission in AZA failure pts: 02/08 (~ 25 %)

- MMF should be considered in AZA intolerant patients

Second Line Therapy for AIH: Alternative Drugs

Safety (Intolerance) versus Efficacy
Second Line Therapy for Treatment Failures: Alternative Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclosporine A</td>
<td>3-5 mg/kg kg/qd</td>
<td>hypertension, renal insufficiency</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>3 mg bid</td>
<td>hypertension</td>
</tr>
<tr>
<td>Mycophenolate Mofetil</td>
<td>750-1000 mg bid</td>
<td>Diarrhea, leucopenia</td>
</tr>
<tr>
<td>6-thioguanine</td>
<td>20 mg/day</td>
<td></td>
</tr>
<tr>
<td>6-mercaptopurine</td>
<td>1.5 mg/kg/day</td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td>10 mg per week</td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>1-1.5 mg/kg/day</td>
<td>Cystitis, leucopenia</td>
</tr>
<tr>
<td>Everolimus</td>
<td>0.75-1.5mg bid</td>
<td>Proteinuria, lipid disturbance, ulcera</td>
</tr>
<tr>
<td></td>
<td>(3-6ng/ml)</td>
<td></td>
</tr>
</tbody>
</table>

NONE OF THESE SECOND LINE THERAPIES IS APPROVED!
Management of failures to standard of care

- Biologicals
 - Anti TNF
 - Anti CD 20 (Rituximab)
 - Anti B cell and anti BAFF-R (VAY736)
Treatment of refractory AIH with anti-TNF

Weiler-Norman et al. J Hepatol 2013
Anti-TNF alpha may cause AIH

• Induction of AIH following TNF alpha antagonists:

 - Harada K et al. Clin Rheumatol 2008 AIH Exacerbation following Etanercept in patients with rheumatoid arthritis

 - Cravo M. BioDrugs 2010 AIH induced by Infliximab in a patient with Crohn's disease, no relapse after switch to adalimumab
Rituximab Treatment of AIH

Chimeric monoclonal antibody against B cell marker CD20
Rituximab response: case reports

- Burak 2013: 1
- Burak 2013: 2
- Burak 2013: 3
- Burak 2013: 4
- Burak 2013: 5
- Burak 2013: 6
- Santos 2006
- Barth 2010
- D’Agostino 2013: 1 (BL=16 x ULN)
- D’Agostino 2013: 2 (BL = 30 x ULN)

Approx 12 w
Rituximab treatment experience in patients with complicated type 1 autoimmune hepatitis in Europe and North America

- 22 patients, retrospective analysis, UK, Canada Germany
- Before and 24 months after RTX
- Reduction of Prednisolone and freedom of flares
- Improvement of ALT, AST and sustained for 24 months, (p < 0.0010)

- ALT 167 IU/L to 32 IU/L (p< 0.001)
- AST 127 IU/L to 29 IU/L
- IgG 18.9 g/l to 13.2 g/L (p< 0.001)

Than et al, EASL 2018, J Hepatol, 68, S217-8, 2018
Rituximab – Complications and Adverse Events

• Usually mild, infrequent:
 – Infusion reactions, bacterial infections, neutropenia, anemia, rash, fever, diarrhea, reactivation of viral infections

• But include:
 – Late onset neutropenia, rheumatic disease, HBV reactivation, activation of a latent polyoma virus (JC virus) with multifocal leucoencephalopathy
Molecular pathogenesis of autoimmune hepatitis

Manns et al., Journal of Hepatology, 2015

VAY736 = lanalumab
AIH: Future Therapies

• Can we increase therapeutic response by strengthening immunoregulation?

• Anti CD 3

• Low dose IL-2

• Adoptive transfer of Tregs?
Molecular pathogenesis of autoimmune hepatitis

Prof. Dr. med. M.P. Manns
Department of Gastroenterology, Hepatology and Endocrinology
14.01.2019

Manns et al., Journal of Hepatology, 2015
Regulatory T cells (Treg): Numbers and function

No numerical Dysfunction of intrahepatic Treg

Selective Treg depletion under standard therapy

Higher intrahepatic Treg in remission

modified from Taubert et al. J Hepatol. 2014;61(5):1106-14

Similar findings by multiple centers

Oo et al. JI 2010; Peiseler et al. J Hepatol 2012
Renand et al. Hepatol. Commun. 2018

modified from Taubert et al. J Hepatol. 2014;61(5):1106-14
Regulatory T cells (Treg): Numbers and function

Freshly isolated liver infiltrating CD4+CD25^{high}CD127^{low} Treg

Liver supernatant

Serum IL-2

modified from: Jeffery et al. HEPATOLOGY COMMUNICATIONS, Vol. 2, No. 4, 2018
Low dose IL-2 in refractory AIH

modified from Lim et al., Hepatology, 2018

female 20 yrs. with cirrhosis (pediatric AIH-1)

female 56 yrs. with bridging fibrosis (adult AIH-3)

(1 Mio. Units s.c. 5x/month over 6 months)
Relapse occurs rapidly after treatment withdrawal
- Incidence of relapse or loss of remission
 - 59% after 1 year
 - 73% after 2 years
 - 81% after 3 years

In patients with combination therapy at start of withdrawal
- Risk of relapse was higher
- Time to relapse was shorter

Probability of remission after drug withdrawal*

*All patients had been in remission for at least 2 years prior to drug withdrawal
Van Gerven et al. J Hepatol 2013;58:141–7
EASL CPG AIH. J Hepatol 2015;63:971–1004
Chloroquine for Maintenance of Remission in AIH (single center RCT in Brazil)

61 AIH pts. with histologic Remission (HAI<4) among which:
- 30 pts. received Placebo for 36 months
- 31 pts. received CQ 250mg/d for 36 months

Relapse free survival:
- CQ group: 19.9% relapse
- Placebo group: 59.3% relapse
- p = .039

Other adverse events:
- Any AE: CQ (17/31, 54.8%) vs. Placebo (5/30, 16.7%)
- Discontinuation due to AE: CQ (6/31, 19.3%) vs. Placebo (3/30, 10%)
- Classification according to Naranjo algorithm:
 - Definite (0/31 vs. 0/30)
 - Probable (4) vs. Probable (0)
 - Possible (12) vs. Possible (3)
 - Doubtful (1) vs. Doubtful (2)

Grade 3/4:
- CQ: 0
- Placebo: 0

Terrabuio et al., Hepatol Commun, 2019
Thank you for your attention

Hannover Medical School