Take-home messages from Monday 14th January 2019

Marc Bourliere , MD Hôpital Saint Joseph

12th PHC

Paris

Inuary 2018

Hepatitis C : first session

Is there still a role for personalized treatment? Is DAA treatment failure still an issue? Are there still difficult to treat patients ?

Is there still a role for personalized treatment ?

- Good medicine is ALWAYS personal
- Detailed pre-treatment assessment allows optimal therapy

BUT

Pre-treatment assessment reduces access

Don't let the perfect be the enemy of the good

Is DAA treatment failure still an issue?

• We have options for any DAAs failure in 2019

DAA1 non NS5A : SOF+PEG±RBV, SOF±RBV, SOF+SMV±RBV, DAA1 NS5A : LDV/SOF±RBV, SOF+DCV±RBV, DCV+PEG±RBV, OBV/PTVr+DSV±RBV, OBV/PTVr±RBV, EBR/GZR±RBV, SOF/VEL. DAA2 NS5A : SOF/VEL/VOX, glecaprevir/pibrentasvir, SOF+ glecaprevir/pibrentasvir

Marc Bourliere PHC 2019

Are there still difficult to treat patients ?

- High & pangenotypic efficacy of the different regimens removed the « special » and almost the « difficult-to-treat » populations
- The 3 main remaining difficulties are mainly related to drug-drug interaction (including phytotherapy) and adherence
- Safety of DAAs is fair which does not exclude very rare and potentially severe adverse events nor their cautious prescription

State of the art lecture

Access to treatment and linkage to care

Access to treatment and linkage to care

- Barriers to HCV therapy still exist despite the availability of medications with near-universal efficacy
- Barriers exist at multiple levels: Patient, provider, health system
- While every country has unique challenges, some barriers are common across all countries
- Goal of global elimination of HCV
- May start with microelimination projects
- Numerous examples of successful programs indicate that removing barriers and improving access to care is possible

Clinical case: Treatment of HCV decompensated cirrhosis

- ✓ Patients with chronic HCV and decompensated cirrhosis are the most difficult to manage in the DAA era
- ✓ The SVR is lower only 85-95%
- Achieving a SVR in a patient with advanced symptomatic cirrhosis may not improve quality of life
 - MELD purgatory
 - Not appropriate for all patients
 - Best for patients with:
 - Low MELD
 - Non-liver transplant candidates

Clinical case: Treatment of HCV decompensated cirrhosis

- ✓ Challenges of treating HCV:
 - Patients may decompensate further during treatment
 - Hospitalization may impact compliance
 - Agents containing a protease inhibitor cannot be used
 - High rate of AKI limits use of SOF containing agents
 - Although recommended it is difficult to use ribavirin
- Patients with cirrhosis who achieve SVR remain at increased to develop:
 - Hepatocellular carcinoma
 - Additional episodes of hepatic decompensation

Hepatitis C : second session

HCV therapies: the last challenges How to treat HCV-HBV co-infections? Do DAAs decrease the risk of HCC?

HCV therapies: the last challenges

- Several challenges remain in small populations. Most likely that these populations disappear faster than the challenges are solved
 - e.g. patients with decompensated cirrhosis
- Some challenges remain in large populations
 - e.g. HCC surveillance after SVR
- Some challenges are key to reduce the burden of disease in geographic regions and populations
 - Diagnosis rates, linkage to care, and access to DAAs
- One challenge to indeed eliminate HCV globally
 - Vaccine development

How to treat HCV-HBV co-infections?

- All patients scheduled for treatment of HCV infection should be tested for HBsAg.
- At least patients with confirmed or suspected immunodeficiency should be additionally tested for anti-HBc.
- Prophylaxis with potent nucleoside/nucleotide analogue should be administered at least 4 weeks before start of anti-HCV treatment in all HBsAg-positive and immunodeficient HBsAg-negative/anti-HBc-positive patients and continued at least untill 12 weeks after HCV treatment termination.
- Immunocompetent HBsAg-negative/anti-HBc-positive patients probably do not need specific monitoring for possible HBV reactivation.

Do DAAs decrease the risk of HCC?

HCC ocurrence after DAAs: the take-home message

Successful antiviral therapy reduces but does not eliminate, the risk of HCC development

Antonio Craxi, Massimo Levrero PHC 2019

Do DAAs decrease the risk of HCC?

HCC recurrence after DAAs: the take-home message

- Patients with HCV cirrhosis and a previously cured HCC remain at risk of cancer recurrence after HCV eradication
- The risk of HCC recurrence is lower than in non-eradicated patients, and is proportional to previous HCC recurrence and tumor size
- Preliminary data in patients with previous cured HCC suggest that the response rate to DAAs is excellent and that survival may be higher in SVR patients despite HCC recurrence
- DAAs should not be withheld in these patients

Antonio Craxi, Massimo Levrero PHC 2019

State of the art lecture

Autoimmune hepatitis

Autoimmune hepatitis

- Female gender
- Extrahepatic autoimmune syndromes
- Hypergammaglobulinia (IgG)
- Autoantibodies: ANA, LKM-1, SMA, SLA/LP
- Genetics: HLA DR 3 , DR 4, AIRE
- Histology
- Immunsuppressive Therapy

Feature/parameter	Discriminator	Score
Antibodies (max 2 points)		(0–2 points total)
ANA or SMA+	≥1:40	+1
ANA or SMA+	≥1:80	+2
or LKM+	≥1:40	+2
or SLA/LP+	Any titre	+2
	>ULN	+1
igo or y-giobulins level	>1.1x ULN	+2
Liver histology	Compatible with AIH	+1
(evidence of hepatitis is required)	Typical of AIH	+2
	Atypical	0
Absence of viral hepatitis	No	0
	Yes	+2

Score \geq 7 = Definite AIH Score \geq 6 = Probable AIH

Michael Manns PHC 2019

Autoimmune hepatitis

	Prednisone	Prednison e	Azathioprine		Cyclosporine	3-5 mg/kg	hypertension
	(mg/ day)	(mg/ day)	USA (mg/ dav)	EU (mg/ kg/ day)	A	ky/qu 2 ma hid	insuffiency
Week 1	60	30	50	1 - 2	Tacroninus	3 mg blu (5 – 7 ng/ml)	renal
Week 2	40	20	50	1-2		(0 1 119/111)	insuffiency
Week 3	30	15	50	1 – 2			Diabetes,
Week 4	30	15	50	1 – 2			neuropathy
Maintenan	20 and less	10	50	1 - 2		750 4000	D . 1
ce-Therapy					Mycophenolat	750-1000 mg	Diarrhea,
Reasons	Cytopenia	Postmenopau	sal		e moleui	DIQ	leucopenia
for Choice	Thiopurinmet	Osteoporosis	Osteoporosis			20 mg/day	
of Therapy	of Therapy hyl- uncontrolled Diabetes, Hypertension,				C C		
	transferase-	Obesity	Obesity			1 E malkalday	
	Deficiency	Acne	!!!		0- mercentonurin	1.5 mg/kg/uay	
	Pregnancy	Emotional Ins	tability		P		
A					C		
$\Lambda_{\rm m}$ MOOD 20 (Dituusing ab)					Methotrexate	10 mg per	
Anti ^o CD 20 (Rituximab)						week	
Anti B cell and anti BAFF-R (VAY736)					Cyclophospha	1-1 5	Cystitits
/ ((111100)	mide	mg/kg/dav	leucopenia
	• Anti CD 2						
• Anii CD 3			Everolimus	0.75-1.5mg	Proteinuria,		
 Low dose IL-2 						DIC (2. Grag(mal)	lipid
 Adoptive transfer of Trace 2 					>	(3-ong/m) Michaol Man	nal DLLC 2010
Auopuve inansiel of freys?							

How to characterize NASH? Is change of life style counseling efficient? Therapeutic advances

- NASH is defined by histology which makes from liver biopsy a mandatory procedure if definite diagnosis is needed.
- Liver biopsy is a robust procedure that can assess all components of NAFLD if performed by trained physicians (hepatologists and pathologists)
- An analytical description that reports Activity and Fibrosis in a semi-linear fashion is more appropriate than a dichotomous classification (NASH vs No NASH)
- LB is obviously not a screening tool and biomarkers are strongly needed to select patients at high risk of severe disease and who will need a biopsy

How to characterize NASH ?

Patients with suspected NAFLD

How to characterize NASH?

Liver biopsy

Assessment in selected populations or in clinical trials

Best used as an integrated system to allow more efficient evaluation of patients with NAFLD

Pierre Bedossa & Laurent Castera PHC 2019

Is change of life style counseling efficient?

_	52 we	eeks of lifesty	le intervention	\longrightarrow
% Weight loss (WL)	5	5%	7%	10%
NASH-resolution	10%	26%	64%	90%
FIBROSIS-regression	45%	38%	50%	81%
STEATOSIS improvement	35%	65%	76%	100%
% Patients achieving WL	70%	12%	9%	10%

- Lifestyle change is an effective treatment modality for curing/controlling NAFLD/NASH.
 Traditional measure of success = weight loss, but other important endpoints independent of weight: diabetes incidence & complications, CVS events, mortality, and cancer.
- Lifestyle change is difficult to achieve

 ✓ Three essential components: Cognitive behavioural Therapy + dietary modifications + physical activity changes → <u>ALL</u> required for successful outcomes

MULTIDISCIPLINARY, HOLISTIC, INDIVIDUALISED approach is key
 Societal efforts to change an "obesigenic environment" is needed

Elisabetta Bugianesi PHC 2019

Therapeutic advances

Bariatrics can improve liver histology

OLE

- Steatosis resolution: 66%
- Lob Inflammation: 50%
- Ballooning: 76%
- Fibrosis: 40%
- 12% had worsening fibrosis
- Overall GRADE quality low

Current status of drug treatment- impact on NASH resolution

Therapeutic advances

Fibrosis improvement with current agents

GLP-1 receptor agonists have the potential for cardiometabolic as well as liver-benefits

Arun Sanyal PHC 2019

Cross paths Liver/metabolism

TAKE HOME MESSAGE 1:

The hepatologist should screen for T2D in patients with NAFLD

In clinical practice: FPG (> 125 mg/dL) & HbA1C (>6.4%)

Screening of NASH in patients with type 2 diabetes

- What is the knowledge of diabetes specialists regarding NAFLD in T2D patients ?
- How to screen ? : the performance of non-invasive methods in T2D patients

Less than 5 % of diabetogists give the right answer

68% of diabetologists had not used non invasive method for severity of LD

- FIB-4 should be the first line method to screen T2D patients for NASH
- Fibroscan as second line for detection of advanced fibrosis

Screening of NASH in patients with type 2 diabetes

- In patient with diabetes antidiabetic drugs should be adapted to the diagnosis and the severity of NAFLD
 - Pioglitazone is effective for long-term treatment of patients with NASH with type 2 diabetes
 - GLP1 analogues and SGLT2i have benefit against NAFLD in patients with type 2 diabetes, but it seems that this effect is mainly driven by weight loss

- the diagnosis of cirrhosis should lead to change the management of diabetes
 - HbA1c measurement is not accurate in patients with cirrhosis
 - protective effect of metformin
 - Caution to adverse effects of diabetes therapy

HCC today and the future

- Liver cancer is the 16th leading cause of death globally. Incident cases increased 114% from 471,000 in 1990 to <u>1,007,800 in 2016</u>, causing 810,000 related deaths.
- ➢ 47% of increase
- The most pronounced increases were generally observed in countries with high socio-demographic index including the Netherlands, the UK, and the USA.

The "Gold Rush" of Cancer Immunotherapy Trials

Stimulating Agents

Blocking Agen

Massimo Colombo PHC 2019

HCC today and the future

2018 EASL Recommendations

1. Public health policies to prevent, detect, and treat chronic liver disease

2. Appropriate cancer surveillance to detect HCC in a stage amenable to curative treatment

Prevention : HBV vaccination

Appropriate cancer surveillance

<u>The lesson from Japan</u> : Screening rose from 12.9% (1966-1979) to 77.6% (2000-2013) curative treatments from 3.3% to 62.8%. <u>OS from 16.6 to 52 m</u>o.

<u>BUT</u>

France< 25% of HCC are diagnosed in the context of cirrhosis surveillance</th><30% are amenable to curative treatment .</td>

Hong-Kong no screening, OS of HCC was 17.8 months during the period 2003-2014.

USA HCC patients missing US surveillance:HCV 13%,ETOH 40%,NAFLD 50%. Meta-analysis by Singal(2012):18.4% uptake of surveillance in cirrhotics.

Massimo Colombo PHC 2019

HCC today and the future

2018 EASL Recommendations

3. Link molecular subclasses in clinical trials to therapeutic response and outcome

FUTURE DIRECTIONS

Liquid biopsy

- <u>Use</u> : diagnosis, disease stratification and monitoring response to treatment.
- Candidates : extracellular vesicles, cell-free nucleic acids and tumor cells.

Mann J et al Gut 2018;67:2204-2012

Personalized Medicine

- Use HCC subclasses to select the optimal therapy for patients
- Biomarkers to identify the subsets of patients with highest rates of response to specific targeted therapies

Dhanasekaran R et al Gastroenterology 2018

Massimo Colombo PHC 2019

Metals and the liver

Copper and the liver Iron and the liver

Copper and the Liver

Take home message Wilson disease

- Highly variable clinical presentation
- No clear cut evidence for a correlation genotype-phenotype
- Cofactors:
 - Genetic factors?
 - Environmental factors?
- Message for hepatologists: consider Wilson disease in any patient with unclear liver disease! IT IS TREATABLE!

NAFLD – copper connection

- Experimental:
 - · Low copper diet leads to NAFLD
 - Low copper diet + high sucrose highest degree of steatosis
 - High fat diet decreases hepatic copper content
- Patients:
 - Low hepatic copper content in (lean) NAFLD
 - Interaction with hepatic iron

Iron and the Liver

- The liver is the main storage site of iron but also the central regulator of body iron homeostasis as the main source of hepcidin, the iron hormone.
- Genetic loss of hepcidin or hepcidin-ancillary regulators, such as HFE, cause hereditary hemochromatosis, the paradigmatic human iron overload disease.
- Loss of hepcidin-producing liver mass may cause systemic nonhemochromatosis iron overload
- Liver disease factors/mediators that modulate the capacity of the liver to produce hepcidin may cause hepatic iron overload and affect liver disease progression.
- Manipulating hepcidin synthesis activity or hepcidin hormone-replacing strategies represent the first etiologic cure for iron-related disorders.

Thank you for your attention

A great thanks to all speakers who provide me their presentation