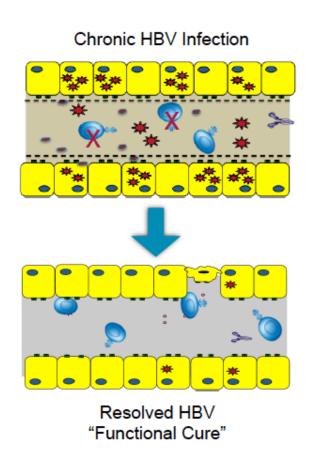


PHC 2020 January 13 & 14 - 2020 PARIS - Palais des Congrès

Boosting innate and adaptive immunity for HBV cure

Massimo Levrero

- Centre de Recherches en Cancérologie de Lyon (CRCL), INSERM, U1052, CNRS 5286, Lyon, France
 Université Lyon 1 (UCLB1), Lyon, France
 - 3. Hospices Civils de Lyon, Service d'Hépato-Gastroentérologie



Disclosure

Relations that could be relevant for the meeting	Company names
Sponsorship or refund funds	Jansen, Gilead, MSD, Roche, Intercept
Payment or other financial remuneration	
(Advisory Committees or Review Panels)	Gilead, Galapagos, Assembly Pharma
(Research Projects)	BMS, Contravir, Evotec/Sanofi
Shareholder rights	NA
Other relations	
(Speaking and Teaching)	Gilead, MSD, Roche, Jansen
(Advisory Committees or Review Panels)	Jansen, Roche, Arbutus, Evotec/Sanofi

Do we need anti viral immunity to cure HBV?

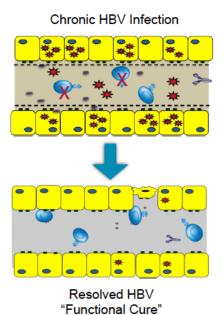
no

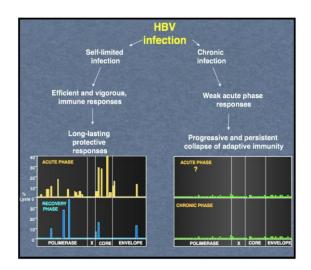
CpAMs"Capsid inhibitors"

Entry inhibitors

If cccDNA half life is shorter than presumed

You may think of it as « intensification »


Inhibitors of HBsAg release


RNA interference

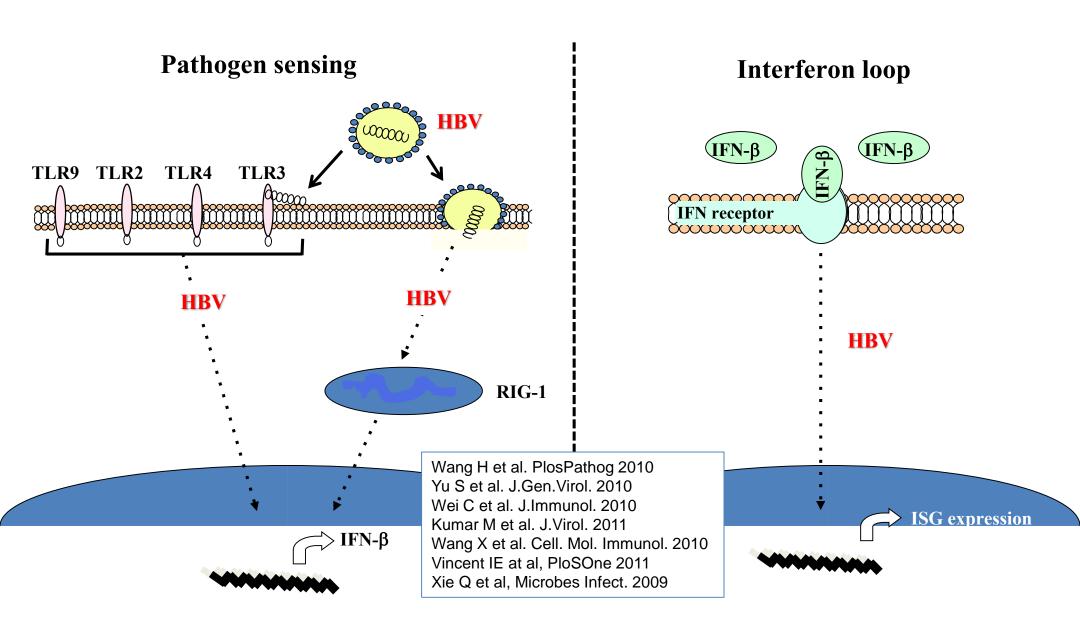
RNA destabilizers

If lowering HBsAg is sufficient to restore immune responses

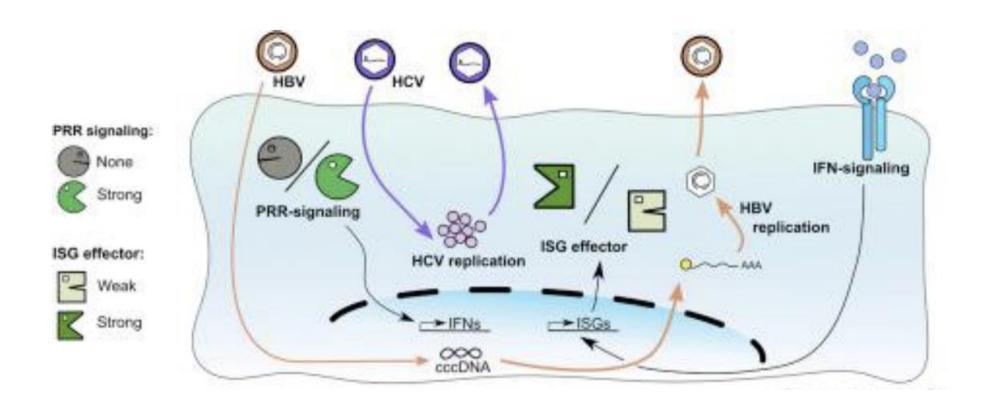
Do we have evidences that immunity can control HBV?

- Functional dichotomy of adaptive immunity in chronic versus resolved patients
- Immune suppression (T and B cells) causes HBV reactivation
- Transplantation of HBV primed bone marrow causes HBV functional control in CHB patients

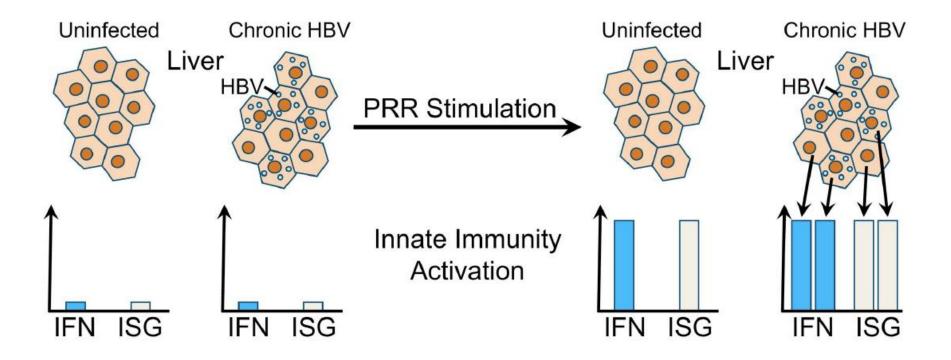
Lau et al. Hepatology 1997 llan et al. Gastroenterology 1993

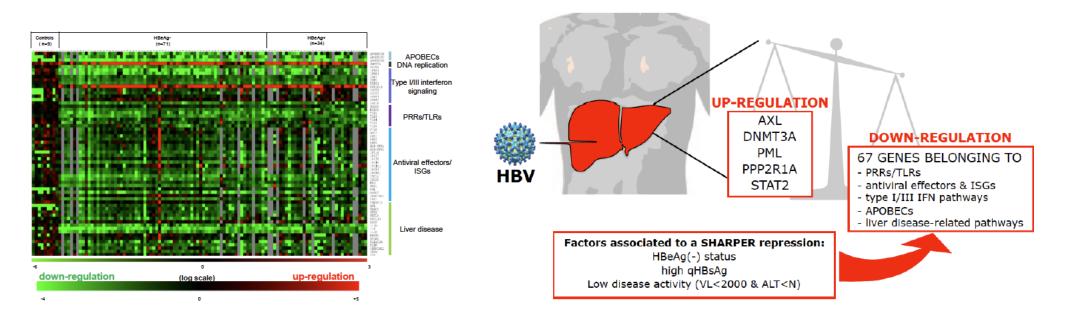

 HBsAg+ liver became HBsAg negative after transplantation in resolved HBV.

Loggi et al. J Hepatol 2009

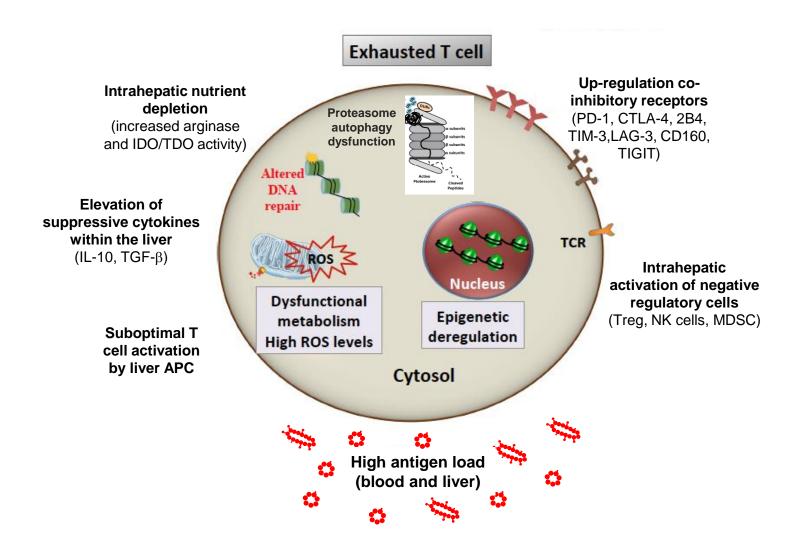

Restoration of antiviral immunity Background

- 1. HBV is recognized by the innate immunity but it is poorly sensed and is a weak inducer of innate pro-inflammatory cytokines
- 2. HBV-specific T cells in chronic infection are deeply dysfunctional
- 3. NK cells in chronic HBV infection seem to be impaired in their anti-viral capacity
- 4. Expansion of HBsAg-specific atypical memory B cells in CHB


Limited HBV sensing is combined with active suppression of innate responses


HBV by-passes the innate immune response and does not protect HCV from antiviral activity of interferon

Hepatitis B virus does not interfere with innate immune responses in the human liver



Suppression of intrahepatic ISG expression in CHB patients: role of high HBsAg levels

- 1. HBV is recognized by the innate immunity but it is poorly sensed and is a weak inducer of innate pro-inflammatory cytokines
- 2. HBV-specific T cells in chronic infection are deeply dysfunctional
- 3. NK cells in chronic HBV infection seem to be impaired in their anti-viral capacity
- 4. Expansion of HBsAg-specific atypical memory B cells in CHB

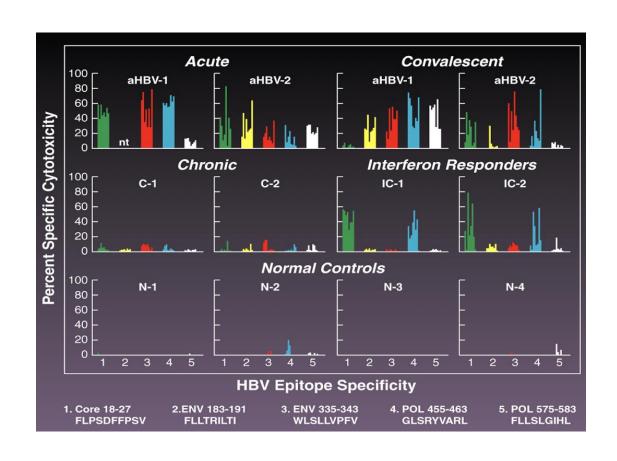
HBV-specific T cells are dysfunctional in chronic HBV infection

HBV specific CD8 T cell responses in humans

Hepatic microenvironment

Arginase, IDO, IL-10, TGFβ

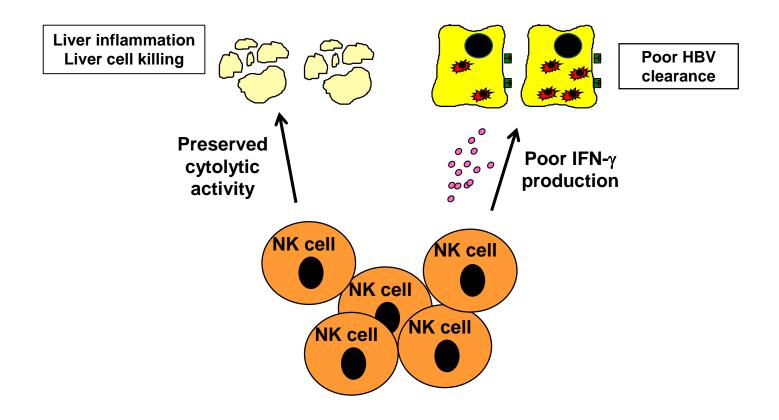
Tolerogenic antigen presenting cells


Local induction of regulatory cells

T regs by LSECs, stellate cells and DC MDSCs by stellate cells

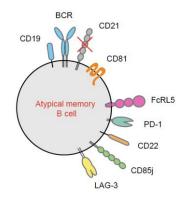
Attrition of T cell responses

Functional exhaustion/up-regulation coinhibitory receptors (effector T cells)


T cell killing by NK cells

- 1. HBV is recognized by the innate immunity but it is poorly sensed and is a weak inducer of innate pro-inflammatory cytokines
- 2. HBV-specific T cells in chronic infection are deeply dysfunctional
- 3. NK cells in chronic HBV infection seem to be impaired in their anti-viral capacity
- 4. Expansion of HBsAg-specific atypical memory B cells in CHB

NK cell functional dichotomy in chronic HBV infection:


more pathogenic than protective

- 1. HBV is recognized by the innate immunity but it is poorly sensed and is a weak inducer of innate pro-inflammatory cytokines
- 2. HBV-specific T cells in chronic infection are deeply dysfunctional
- 3. NK cells in chronic HBV infection seem to be impaired in their anti-viral capacity
- 4. Expansion of HBsAg-specific atypical memory B cells in CHB

HBsAg specific atypical memory B cells in CHB

Gastroenterology 2018;154:2222-2236

- HBsAg AtMBCs > AtMBCs HBcAg
- enriched for PD-1 and T-bet
- Impaired cytokine production
- Impaired plasma cell differentiation
- Defective antibody response

Dysregulated Response of Follicular Helper T Cells to Hepatitis B Surface Antigen Promotes HBV Persistence in Mice and Associates With Outcomes of Patients

Xiaowen Wang,^{1,2,*} Qingyang Dong,^{1,*} Qian Li,^{3,4,*} Yuanyuan Li,⁵ Dianyuan Zhao,¹ Jinjie Sun,⁶ Junliang Fu,⁵ Fanping Meng,⁵ Hu Lin,⁵ Junjie Luan,⁵ Biao Liu,¹ Min Wang,¹ Fu-Sheng Wang,⁵ Fuchu He,^{1,2,4} and Li Tang^{1,3}

The Journal of Clinical Investigation

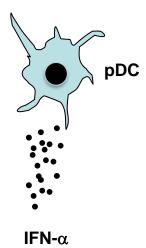
Circulating and intrahepatic antiviral B cells are defective in hepatitis B

Alice R. Burton, ..., Nadege Pelletier, Mala K. Maini

2018

PD-1 blockade partially recovers dysfunctional virus—specific B cells in chronic hepatitis B infection

Loghman Salimzadeh, ..., Patrick T.F. Kennedy, Antonio Bertoletti

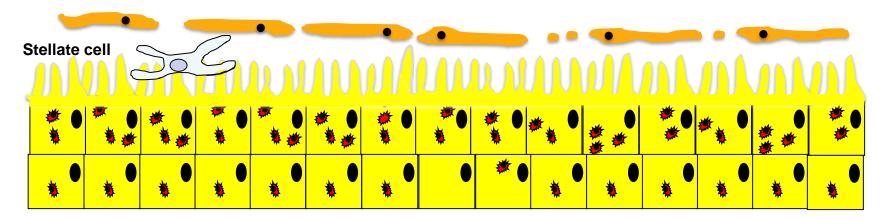

Targeting Innate Immunity

- TLR-7 agonists: target pDCs; induction of endogenous type I IFN
 [Direct antiviral effect and restoration of anti-viral immunity]
- TLR-8 agonists: target monocytes CD161^{bright} / MAIT / Nk^{bright} cells
 [Induction of IL12, IL18, IFNγ]
- **RIG-I agonists**: restoration of endogenous IFN production & interference on Polymerase/pgRNA interaction

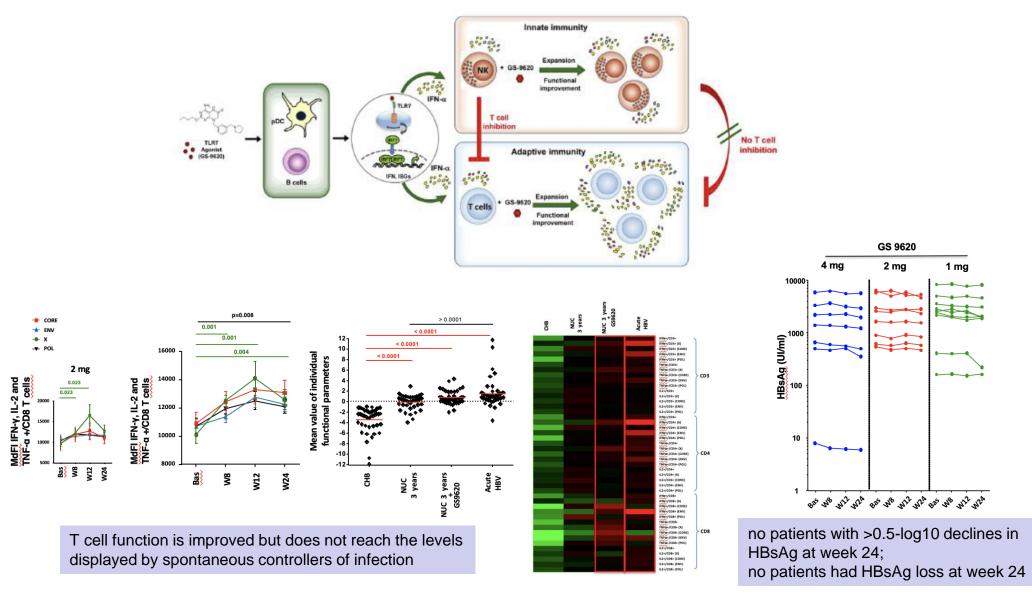
Immunomodulators							
Drug	Company	Target	Formulation	Delivery	Stage		
GS-9620	Gilead Sciences	TLR-7 agonist	Small molecule	Oral	Phase 2		
GS-9688	Gilead Sciences	TLR-8 agonist	Small molecule	Oral	Phase 1		
Inarigivir (SB9200)	Spring Bank Pharmaceuticals	RIG-I/NOD agonist	Small molecule	Oral	Phase 2		
RO6864018 (RG7795, ANA773)	Roche	TLR-7 agonist	Small molecule	Oral	Phase 2		
AIC 649	AiCuris	TLR-9 agonist	Inactivated parapoxvirus ovis (iPPVO) particle	Infusion	Phase 1		

Manipulation strategies for innate immunity

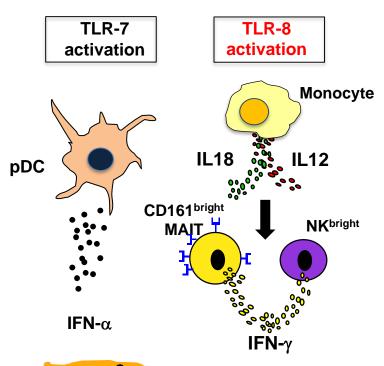
TLR-7 activation


TLR7 agonist GS-9620:

• prolonged suppression of hepatitis B virus in chronically infected chimpanzees

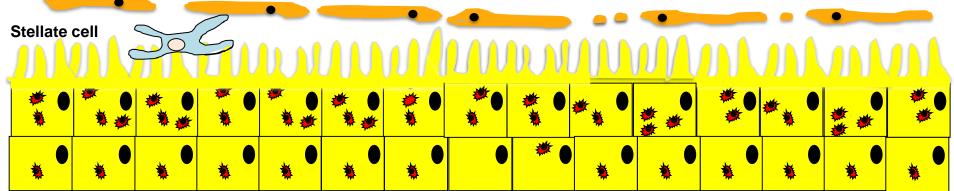

Lanford et al, Gastroenterology 2013

 induces an ISG response in patients in vivo but no durable HBsAg loss

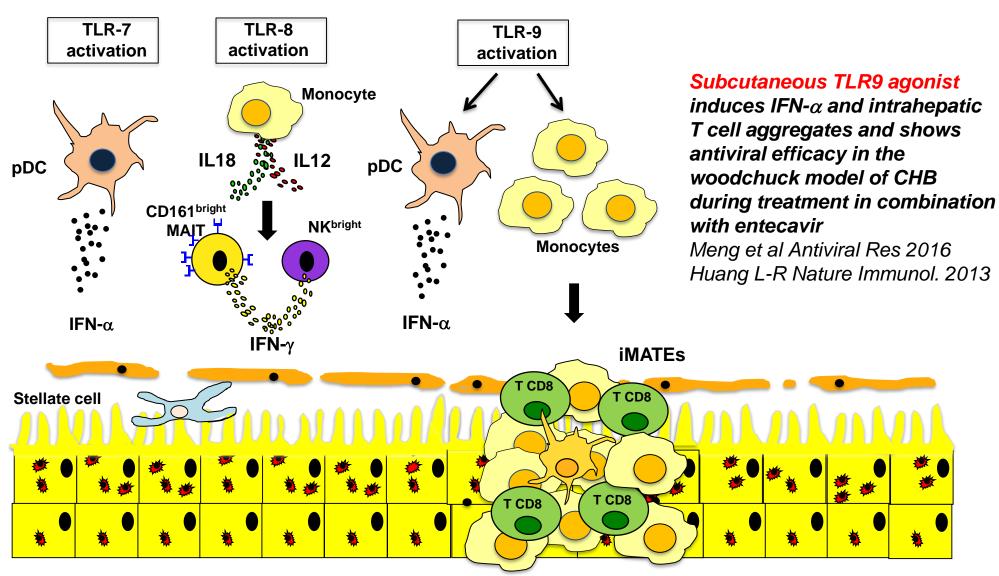

> Gane et al, J Hepatol 2015 Janssen et al, J Hepatol, 2017

TLR-7 agonist increases responses of HBV-specific T cells and natural killer cells in CHB patients treated with NUCs

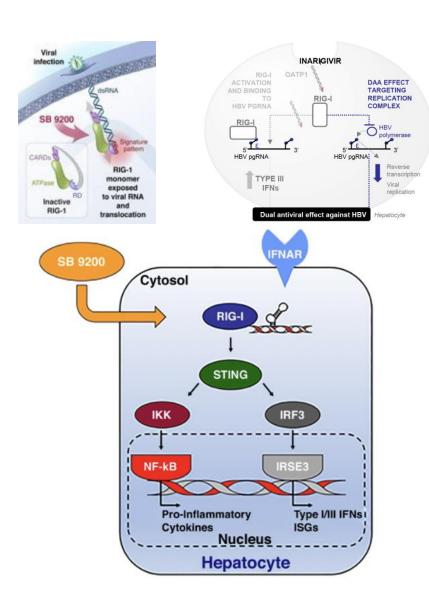
Manipulation strategies for innate immunity



TLR8 agonist GS-9688: sustained efficacy and surface antigen seroconversion in the woodchuck model of CHB


Daffis et al J Hep 2017, 66:S692-S693

PHASE Ib clinical trial of TLR8 agonist GS-9688


- Blood samples from HBV patients treated with GS-9688 for 2 to 7 days and analyzed for cytokine response
- GS-9688 induced cytokines and also reduced the frequency of conventional regulatory Tcells (Tregs)
- GS-9688 triggered dose-dependent activation of NK cells
- GS-9688 triggered the production of IL12, IFNg & TNFa: potential for stimulation of innate immunity, adaptive immunity, and direct antiviral effect

Manipulation strategies for innate immunity

RIG-I agonist (SB 9200): restoration of endogenous IFN production & interference on Polymerase/pgRNA interaction

RIG-I agonist SB 9200: antiviral efficacy in the woodchuck model of CHB during sequential treatment with SB 9200 and entecavir
Suresh et al Plos One 2017

PHASE II ACHIEVE trial of oral RIG-I agonist Inarigivir and Tenofovir Yuen et al Hepatology 2017,66:22A

Inarigivir monotherapy 12 weeks followed by switch to Tenofovir 300 mg for 12 weeks

12 weeks (nargivir nonotherapy 0.0)

Inarigivir - 25 mg

Cohort 1

12 weeks

Inarigivir - 25 mg

Cohort 2

Tenofovir 300 mg daily

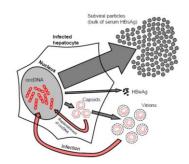
Tenofovir 300 mg daily

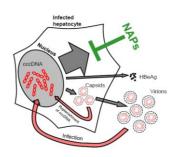
Placebo

All patients switch to tenofovir 300 mg monotherapy

Targeting Adaptative Immunity

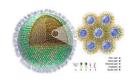
- Antigen load reduction ?
- Therapeutic vaccines: stimulation of HBV-specific CD4 and CD8 T cells
- Check-point inhibitors: rescue exhausted HBV specific CD4 and CD8 T cells
- Targeting mytochondrial disfunction: restoration of the antiviral activity of exhausted HBV-specific CD8 T cells
- T cells engineering: redirecting T cells to infected hepatocytes

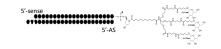

Reduce antigen load to restore T cell responses


- HBsAg clearance is a a therapeutic end-point
- Reduction of HBsAg should translate in a revival of HBV-specific exausted T cells
- Multiple strategies are evaluated:
 - Interfering RNAs (siRNA): «genetic silencing»
 - Nucleic Acid Polymers (NAPs): HBsAg secrétion
 - Anti-HBs antibodies

siRNAs ASO

Nucleic Acid Polymers (NAPs)


Vaillant, 2016. Antiviral Res. 133: 32-40 Real et al.,2016 J. Hepatol. 64: S395 Noordeen et al., 2015 PLOS One 10: e0140909 Noordeen et al., 2013 AAC 57: 5299-5306 Nooreen et al., 2013 AAC 57: 5291-5298



Lipid Nanoparticles for IV infusion

GalNAc-Conjugate for sc administration

MoA unknown

An ideal therapeutic vaccination approach

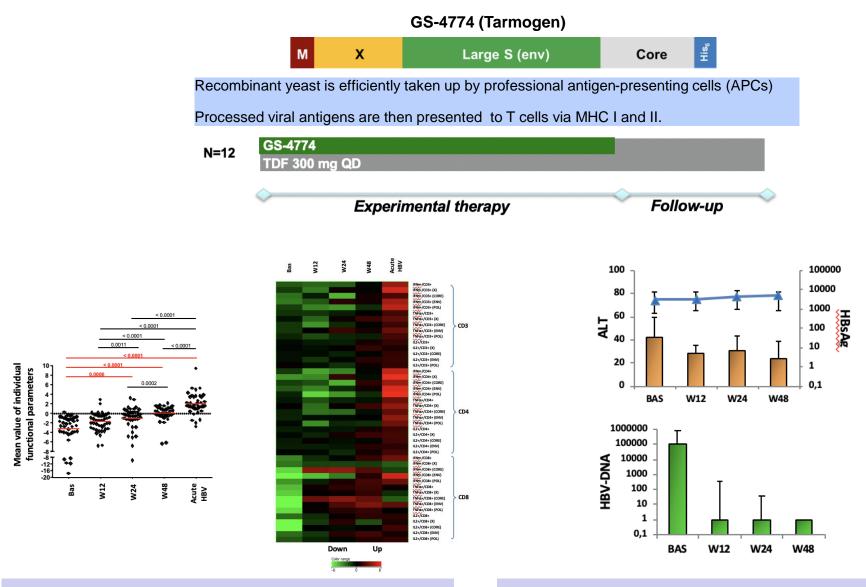
Vaccine:

- incorporating core, pol and surface antigens
- inducing multispecific broadly cross-reactive T cells
- inducing functional B cells and neutralizing antibodies
- accompanied by immunomodulation to overcome HBV-specific immune exhaustion

Therapeutic vaccine trials in chronic hepatitis B

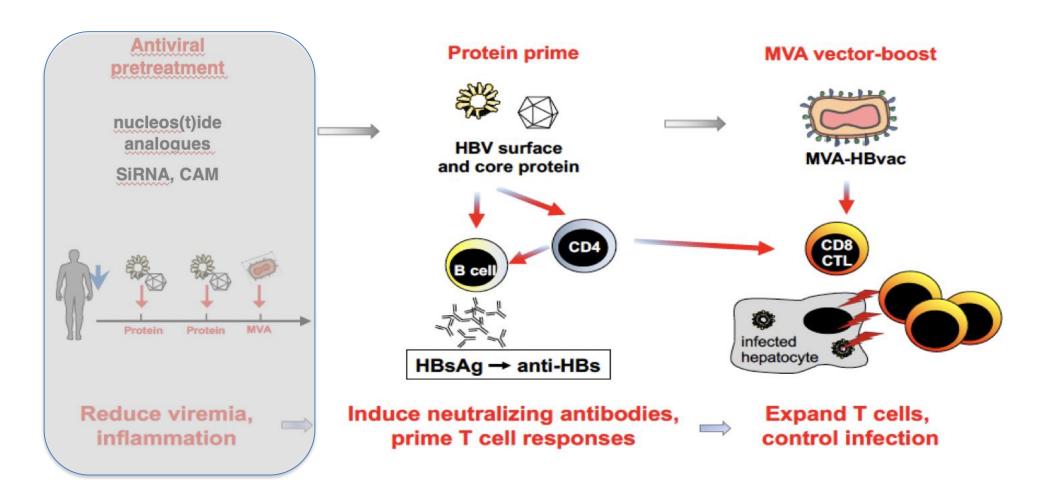
Homologous vaccines

	_		
-	HepT cell	peptide + adjuvant	Phase I
-	INO-1800	DNA-vaccine	Phase I
-	CVI-HBV-002	DNA-vaccine	Phase I/II
-	HB-110/100	DNA-vaccine	Phase I
-	ppdpSC18	DNA-vaccine	Phase I/II
_	HBO2-VAC-ADN	DNA-vaccine	Phase I/II
_	Theravax	protein + adjuvant	Phase Ib - failed
-	GS-4774	protein + adjuvant	Phase II
-	ePA-44	peptide + adjuvant	Phase II
-	ABX 203	protein	Phase II/III
-	TG1050	adeno vector vaccine	Phase II

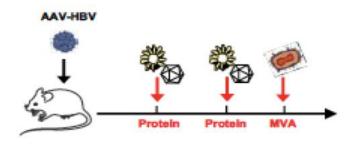

Heterologous prime – boost vaccines

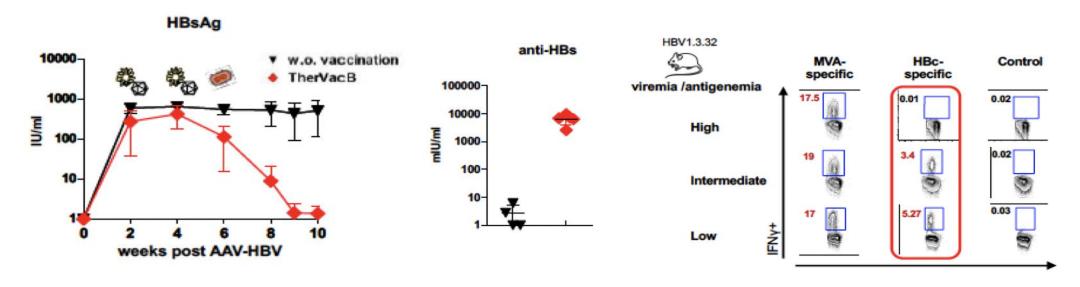
- pSG2.HBs/MVAHBs
- DNA-vaccine + MVA
- Phase Ib/II (S only, no Ab) failed

- TherVac B


- protein + MVA (broad)
- preclinical PoC

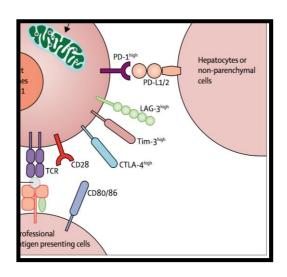
Therapeutic vaccines for chronic HBV infection

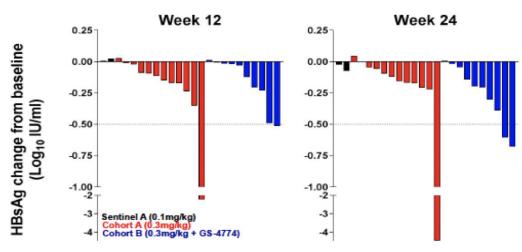


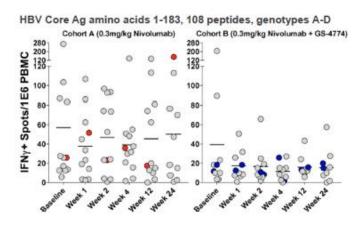

- T cell responses are improved by vaccination but still remain much lower than after spontaneous resolution of infection
- All patients normalized ALTs, most became HBV-DNA neg
- No patients had HBsAg loss at week 48

Therapeutic vaccination with prime boost

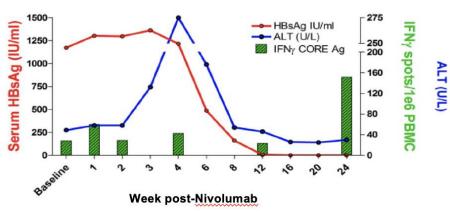
Therapeutic vaccination (TherVac) with prime boost


High antigen levels limit the immunological response to therapeutic vaccination in HBV-Tg mice

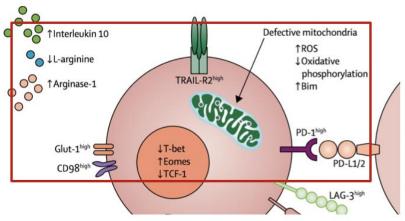

Response to *TherVac* is increased by prior decline of antigen


siRNA pre-treatment and TherVacB allow to "cure" HBV

HBV-specific T cell responses in patients with chronic HBV infection treated with anti-PD-1 alone or in combination with the GS-4774 vaccine



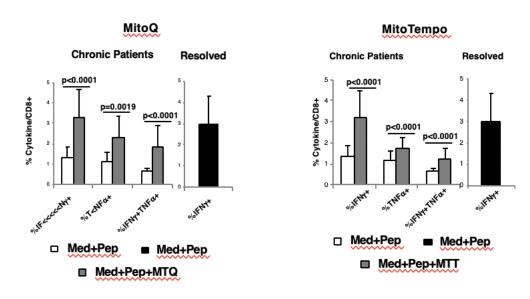
- 2/22 (9%) at wk 12 and 3/22 (14%) at wk 24 with > 0.5 log₁₀ reduction in HBsAg
- 19/22 pts treated with 0.3 mg/Kg showed some decline in HBsAg by wk 24



- HBc- and HBs-specific T cells detected ex vivo in 18/24 pts
- No increase with Nivolumab

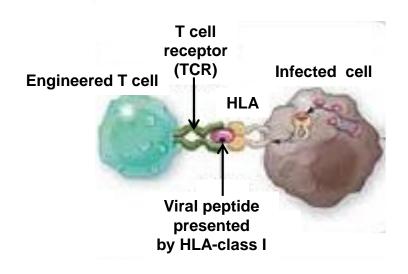
 1 patient off treatment for > 9 mo with sustained S loss and anti-HBs seroconversion

Targeting underlying HBV-specific T cell mitochondrial/metabolic dysfunction

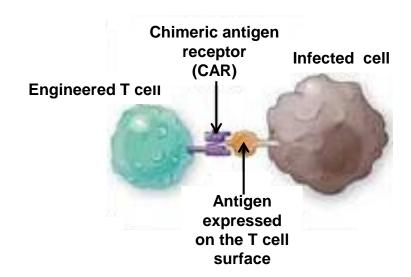


Schurich et al Cell Reports 2016 Fisicaro et al Nat Med 2017

Exhausted CD8 T cells are poorly able to use oxphos to meet their energy demands


MitoQ: Ubiquinone moiety
CONJUGATED TO A TPP CATION

MitoTEMPO: Superoxide dismutase mimetic action
Catalase-like action
CONJUGATED TO A TPP CATION


Functional restoration of antiviral effector CD8 responses by mitochondrial targeted anti-oxidant compounds

Adoptive cell therapy through T cell engineering

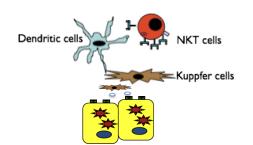
T cells are HLA-class I restricted

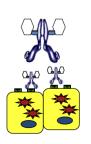
Gehring et al, J Hepatol 2011, Qasim et al, J Hepatol 2015 Kah et al, JCl 2017, Koh et al, Gastro 2018

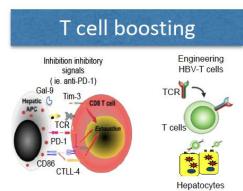
T cells recognize conformational antigen

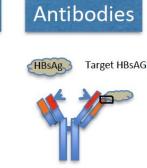
Bohne et al, Gastro 2008, Krebs et al, Gastro 2013

Why Immune therapies didn't (so far) work?


IFN-alpha is the only therapy that increases seroconversion

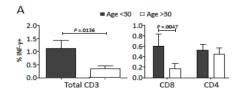

Activation of Intrahepatic Innate Immunity


Restoration of HBV-specific Immunity

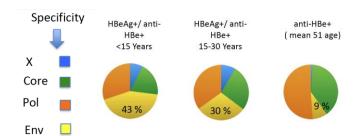


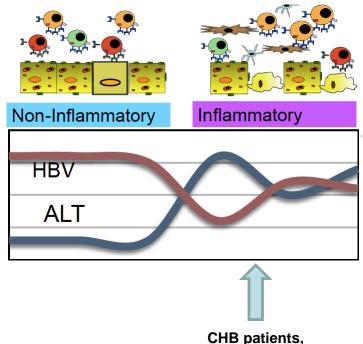
Cytokines/ direct/ antibody delivery..

Because we are targeting the wrong patient population?


Some HBV T cells (tolerant / anergic) **Tolerogenic environment** Suppressive environment

Few HBV T cells (exhausted)


mainly anti-HBe, under NA therapy


Increased frequency of HBV specific T cells in "Young Immunotolerant" pts

Kennedy et al Gastroenerology 2012

More complete T cell repertoire

Consequences of HBV hepatic priming

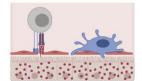
NATURE | VOL 574 | 10 OCTOBER 2019

Dynamics and genomic landscape of CD8⁺ T cells undergoing hepatic priming

Alexandre P. Bénéchet^{1,11}, Giorgia De Simone^{1,2,11}, Pietro Di Lucia¹, Francesco Cilenti^{2,3}, Giulia Barbiera³, Nina Le Bert⁴, Valeria Fumagalli^{1,2}, Eleonora Lusito³, Federica Moalli¹, Valentina Bianchessi^{2,3}, Francesco Andreata¹, Paola Zordan¹, Elisa Bono¹, Leonardo Giustini¹, Weldy V. Bonilla⁵, Camille Bleriot⁶, Kamini Kunasegaran⁴, Gloria Gonzalez-Aseguinolaza⁷, Daniel D. Pinschewer⁵, Patrick T. F. Kennedy⁸, Luigi Naldini^{2,3}, Mirela Kuka^{1,2}, Florent Ginhoux^{6,9}, Alessio Cantore^{2,3} Antonio Bertoletti^{4,6}, Renato Ostuni^{2,3,12}, Luca G. Guidotti^{1,2,12} & Matteo Jannacone^{1,2,10,12}e

Priming by Kupffer Cells

Expansion



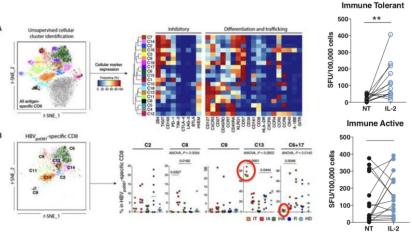
Parenchymal clusters

Priming by hepatocytes

Expansion

Genes of "tissue remodelling" program

Parenchymal clusters



SCIENCE IMMUNOLOGY | RESEARCH RESOURCE

Cheng et al., Sci. Immunol. 4, eaau6905 (2019) HEPATITIS

Multifactorial heterogeneity of virus-specific T cells and association with the progression of human chronic hepatitis B infection

Yang Cheng¹, Yuan O. Zhu², Etienne Becht¹, Pauline Aw², Jinmiao Chen¹, Michael Poidinger¹, Paola Flórez de Sessions², Martin Lloyd Hibberd^{2,3}, Antonio Bertoletti^{1,4}, Seng Gee Lim5, Evan W. Newell 1,6*

- Different HBV specific CD8 T cells in (young) IT
 - and (adult) CHB patients
- Phenotypically they show that they form a different cluster (cluster 13, CD127++ (IL7R), CXCR3++, CD27++)

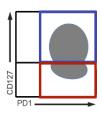
IL-2 treatment

Expansion

Rescuing of "effector" genes

tolerant / anergic

not sensitive to anti-PD1 IL2 dependent


HBV specific CD8 T cells in IT (HBe pos CI) or IA (HBe neg CH) are different

Young / IT: Vac therapy? IL-2? TLR-7/8?

Older CHB: Reconstitution of T cells? PDI 1?

Heterogeneity of HBV specific CD8+ T cells

Distinct subsets


```
memory-like
phenotype
```

severely exhausted

CD127-PD1 Eomeshi / T-betlo

CD127+

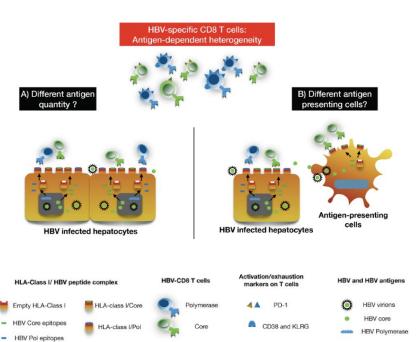
TCF1**

PD1⁺

Different target epitopes

Phenotypic and functional differences of HBV corespecific versus HBV polymerase-specific CD8+ T cells in chronically HBV-infected patients with low viral load

Anita Schuch, ^{1,2,3} Elahe Salimi Alizei, ^{1,2,4} Kathrin Heim, ^{1,2,3} Dominik Wieland, ^{1,2} Michael Muthamia Kiraithe, ^{1,2} Janine Kemming, ^{1,2,3} Sian Llewellyn-Lacey, ⁵ Özlem Sogukpinar, ^{1,2} Yi Ni, ⁶ Stephan Urban, ^{6,7} Peter Zimmermann, ^{1,2,3} Michael Nassal, ^{1,2} Florian Emmerich, ⁸ David A Price, ⁵ Bertram Bengsch, ^{1,2} Hendrik Luxenburger, ^{1,2} Christoph Neumann-Haefelin, ^{1,2} Maike Hofmann, ^{1,2} Robert Thimme^{1,2}


Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection

Ruben C Hoogeveen, ^{1,2} Maxwell P Robidoux, ¹ Tatjana Schwarz, ³ Laura Heydmann, ⁴ James A Cheney, ¹ Daniel Kvistad, ¹ Jasneet Aneja, ¹ Juliana G Melgaço, ⁵ Carlos A Fernandes, ⁶ Raymond T Chung, ¹ Andre Boonstra, ² Arthur Y Kim, ⁷ Thomas F Baumert, ⁴ Jörg Timm, ³ Lia L Lewis-Ximenez, ⁵ Pierre Tonnerre, ¹ Georg M Lauer¹

Conclusions

HBV antiviral immunity: not all CD8 T cells are born equal

Antonio Bertoletti, ⁰ 1,2 Patrick T F Kennedy³

- Immune therapy could be an important asset for HBV cure but patients selection is crucial
- Immune therapies need to be personalized in relation to the immune profile of disease and not only to virological parameters

Thanks to Antonio Bertoletti, Rober Thimmeand Carlo Ferrari for providing me slides and Carlo Ferrari for the continuing collaboration that keeps me in the immunology loop

Massimo Levrero Mirjam Ziesel **Marie Laure Plissonnier** Francesca Guerrieri Natali Abeywickrama Samarakoon Vincenzo Alfano **Oceane Floriot Alexia Paturel**

Paul Deny Jean Claude Cortay Claude Caron de Fromentel

Debora Salerno

Fabien Zoulim Barbara Testoni and her team