# Bifocal HCC on cirrhosis: How we manage it

O. Seror

Interventional Radiology Unit, APHP, Bondy/Bobigny, France



## Man 76 years old

Cirrhosis related to alcohol abuse

- ♦ Prothrombin time : 72%
  ♦ Albumin : 40 g/L
  ♦ Bilirubin : 22 µmol/L
  ♦ Plt : 203 10<sup>3</sup>/mL
- Two nodules < 5 cm (IV & V) showing typical fatty HCC pattern
- ⇒ Child Pugh A + HCC within Milan ⇒ BCLC A => 2 HCCs











## Which treatment?

- 1. Transplantation
- 2. Resection
- 3. Ablation
- 4. TACE
- 5. Other

# Transplantation not realy possible in first line

2.3 Patients / graft

LT indications



## Mean time to LT for HCC in France : 12.2 months

# Scoring for liver graph allocation : MELD & Risk of post LT recurrence





BCLC (AASLD/EASLD)

# Complete response : the hoped-for goal of any treatment for HCC





# Two main strategies for spatial energy deposition



# **Centrifugal energy radiating devices (1 or X applicators)**

- (Multi) Monopolar RFA
- MWA
- Cryotherapy

Centripetal energy deposition devices (2 applicators at least)

• (Multi) Bipolar RFA

• IRE

• Laser

### Centripetal energy deposition => extratumourous (no touch) ablations



## RFA mbp no touch pour les CHC dans Milan (3)

#### **Research Article**



http://dx.doi.org/10.1016/j.jhep.2016.07.010

## Comparison of no-touch multi-bipolar vs. monopolar radiofrequency ablation for small HCC

Arnaud Hocquelet<sup>1,2,\*</sup>, Christophe Aubé<sup>3,4</sup>, Agnès Rode<sup>5</sup>, Victoire Cartier<sup>3</sup>, Olivier Sutter<sup>6,7</sup>, Anne Frederique Manichon<sup>5</sup>, Jérome Boursier<sup>4,8</sup>, Gisèle N'kontchou<sup>9</sup>, Philippe Merle<sup>10</sup>, Jean-Frédéric Blanc<sup>11</sup>, Hervé Trillaud<sup>1,2</sup>, Olivier Seror<sup>6,7,12</sup>

| able 1. Baseline characteristics of patients treated either by monopolar or no-touch multi-bipolar radiofrequency ablation. |             |             |                |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|-------------|-------------|----------------|--|--|--|--|
|                                                                                                                             | MonoRFA     | NTmbpRFA    | <i>p</i> value |  |  |  |  |
|                                                                                                                             | n = 181 (%) | n = 181 (%) | -              |  |  |  |  |
| Age in years (SD)                                                                                                           | 64 (10)     | 65 (9)      | 0.110          |  |  |  |  |
| Male                                                                                                                        | 149 (82.3)  | 144 (79.5)  | 0.503          |  |  |  |  |
| Cirrhosis aetiologies                                                                                                       |             |             | 0.196          |  |  |  |  |
| Non-viral hepatitis                                                                                                         | 103 (57)    | 98 (54)     |                |  |  |  |  |
| Viral Hepatitis                                                                                                             | 66 (36)     | 61 (34)     |                |  |  |  |  |
| Mixed                                                                                                                       | 12 (7)      | 22 (12)     |                |  |  |  |  |
| Child-Pugh A                                                                                                                | 156 (86.1)  | 156 (86.1)  | 1              |  |  |  |  |
| Platelet count ≤100 G/L                                                                                                     | 72 (40)     | 72 (40)     | 1              |  |  |  |  |
| Alpha fetoprotein serum level (categorized)                                                                                 |             |             | 1              |  |  |  |  |
| <10 ng/ml                                                                                                                   | 122 (67.4)  | 122 (67.4)  |                |  |  |  |  |
| 10-100 ng/ml                                                                                                                | 52 (28.7)   | 52 (28.7)   |                |  |  |  |  |
| >100 ng/ml                                                                                                                  | 7 (3.9)     | 7 (3.9)     |                |  |  |  |  |
| Mean tumour size in mm<br>(SD)                                                                                              | 24 (8)      | 25 (8)      | 0.279          |  |  |  |  |
| ≤30 mm                                                                                                                      | 149 (82.3)  | 149 (82.3)  |                |  |  |  |  |
| >30 mm                                                                                                                      | 32 (17.7)   | 32 (17.7)   | 1              |  |  |  |  |
| Multiple tumours                                                                                                            | 36 (19.9)   | 36 (19.9)   | 1              |  |  |  |  |
| Subcapsular tumour                                                                                                          | 22 (12.1)   | 22 (12.1)   | 1              |  |  |  |  |
| Tumour near large vessel                                                                                                    | 24 (13.2)   | 24 (13.2)   | 1              |  |  |  |  |



#### Table 2. Global radiofrequency ablation (RFA) failure, primary RFA failure and local tumour progression according to tumour size and RFA technique.

|                        | <                 | 20 mm n (%)        |         | 20                 | )-30 mm n (%)       | )       | 31                | -40 mm n (%)       | )       |                  | >40 mm n (%)      |         |
|------------------------|-------------------|--------------------|---------|--------------------|---------------------|---------|-------------------|--------------------|---------|------------------|-------------------|---------|
| RF                     | MonoRFA<br>n = 47 | NTmbpRFA<br>n = 39 | p value | MonoRFA<br>n = 102 | NTmbpRFA<br>n = 110 | p value | MonoRFA<br>n = 25 | NTmbpRFA<br>n = 24 | p value | MonoRFA<br>n = 7 | NTmbpRFA<br>n = 8 | p value |
| Primary<br>RFA failure | 0                 | 0                  | n.a.    | 6 (5.9)            | 0                   | 0.011   | 3 (12)            | 0                  | 0.235   | 1 (14)           | 0                 | 0.467   |
| LTP*                   | 10 (21)           | 1 (2.6)            | 0.019   | 19 (20)            | 9 (8.4)             | 0.024   | 8 (36)            | 2 (8)              | 0.032   | 5 (83)           | 1 (12.5)          | 0.026   |
| Global RFA failure     | 10 (21)           | 1 (2.5)            | 0.01    | 25 (25)            | 9 (8.2)             | 0.001   | 11 (44)           | 2 (8.3)            | 0.008   | 6 (86)           | 1 (12.5)          | 0.01    |

## Inconspicuous target with US



Outcomes of patients with hepatocellular carcinoma referred for percutaneous radiofrequency ablation at a tertiary center: Analysis focused on the feasibility with the use of ultrasonography guidance

Ji-Eun Kim, Young-sun Kim\*, Hyunchul Rhim, Hyo K. Lim, Min Woo Le<sub>'European Journal of Radiology 79 (2011) e80-e84</sub> Sung Wook Shin, Sung Ki Cho

| Risk factors             | Number of tumors          | 26.5                     | P-value | Risk ratio (95% CI) |
|--------------------------|---------------------------|--------------------------|---------|---------------------|
|                          | Visible ( <i>n</i> = 100) | %                        |         |                     |
| Body mass index          |                           |                          | 0.106   | 0.862 (0.720-1.032) |
| $<25  \text{kg/m}^2$     | 54                        | 24                       |         |                     |
| $\geq 25 \text{ kg/m}^2$ | 46                        | 12                       |         |                     |
| Child-Pugh score         |                           |                          | 0.243   | 0.673 (0.346-1.309) |
| 5                        | 64                        | 22                       |         |                     |
| 6                        | 24                        | 12                       |         |                     |
| 7                        | 10                        | 2                        |         |                     |
| 8                        | 2                         | 0                        |         |                     |
| Macronodular cirrhosis   |                           |                          | 0.006"  | 4.117 (1.516-1.181) |
| Absent                   | 53                        | 15                       |         |                     |
| Present                  | 47                        | 21                       |         |                     |
| Tumor size               | $1.9 \pm 0.8  \text{cm}$  | $1.4 \pm 0.6  \text{cm}$ | 0.000*  | 0.823 (0.750-0.903) |
| Tumor location           |                           |                          | 0.063   | 0.379 (0.137-1.054) |
| High location            | 28                        | 12                       |         |                     |
| Other                    | 72                        | 24                       |         |                     |

## Often associated with challenging location

## World Journal of Gastroenterology

Submit a Manuscript: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.3748/wjg.v21.i5.1554 World J Gastroenterol 2015 February 7; 21(5): 1554-1566 ISSN 1007-9327 (print) ISSN 2219-2840 (online) © 2015 Baishideng Publishing Group Inc. All rights reserved.

ORIGINAL ARTICL

#### **Retrospective Cohort Study**

Radiofrequency ablation of hepatocellular carcinoma in difficult locations: Strategies and long-term outcomes

Wei Yang, Kun Yan, Gong-Xiong Wu, Wei Wu, Ying Fu, Jung-Chieh Lee, Zhong-Yi Zhang, Song Wang, Min-Hua Chen

| Table 1         Comparison of baseline characteristics of 382   | ł |
|-----------------------------------------------------------------|---|
| hepatocellular carcinoma patients in the difficult group and 88 | ł |
| hepatocellular carcinoma patients in the control group $n$ (%)  | ł |

| Characteristic       | Difficult group<br>(n = 382) | Control group $(n = 88)$ | <i>P</i> value |
|----------------------|------------------------------|--------------------------|----------------|
| Sex                  |                              |                          |                |
| Male                 | 331 (86.6)                   | 74 (84.1)                | 0.531          |
| Female               | 51 (13.4)                    | 14 (15.9)                |                |
| Age (yr)             | $55.3 \pm 10.1$              | $57.4 \pm 11.8$          | 0.652          |
| Liver cirrhosis      | 369 (96.6)                   | 84 (95.5)                | 0.605          |
| Child-Pugh class     |                              |                          |                |
| Class A              | 235 (61.5)                   | 62 (70.5)                | 0.117          |
| Class B              | 147 (38.5)                   | 26 (29.5)                |                |
| Maximum diameter     | $3.4 \pm 1.2$                | $3.1 \pm 1.1$            | 0.071          |
| > 3 cm               | 204 (53.4)                   | 43 (48.9)                |                |
| > 5 cm               | 40 (10.5)                    | 5 (5.7)                  |                |
| Tumor number         | $1.4 \pm 0.6$                | $1.3 \pm 0.9$            | 0.128          |
| Elevated AFP         | 172 (45.0)                   | 38 (43.2)                | 0.754          |
| Previous TACE        | 95 (24.9)                    | 18 (20.5)                | 0.382          |
| Previous hepatectomy | 58 (15.2)                    | 11 (12.5)                | 0.521          |

#### Table 2 Outcome of radiofrequency ablation in the difficult and control groups n (%)

| Group                            | Number of patients | Number of tumors | Tumor diameter (cm) | Early necrosis | Local progression |
|----------------------------------|--------------------|------------------|---------------------|----------------|-------------------|
| Control                          | 88                 | 170              | $3.1 \pm 1.1$       | 166 (97.6)     | $12(7.1)^{1}$     |
| Difficult                        | 382                | 473              | $3.4 \pm 1.2$       | 446 (94.3)     | $60(12.7)^1$      |
| Near large vessels or bile ducts | 87                 | 95               | $3.5 \pm 1.5$       | 89 (93.7)      | 10 (10.5)         |
| Near peripheral structures       | 232                | 291              | $3.4 \pm 1.2$       | 274 (94.2)     | $42(14.4)^{1}$    |
| Under liver capsule              | 63                 | 87               | $3.1 \pm 1.4$       | 83 (95.4)      | 8 (9.2)           |
| Total                            | 470                | 643              | $3.3 \pm 1.3$       | 612 (95.2)     | 72 (11.2)         |

<sup>1</sup>Local progression rate in the difficult group was significantly higher than that in the control group (12.7% *vs* 7.1%, P = 0.046). Local progression rate in the subgroup of tumors near peripheral structures was significantly higher than that in the control group (14.4% *vs* 7.1%, P = 0.018).

Which imaging modality for guidance ?



### Two complementary real time imaging modalities



## Our goal:

make amenable a maximum HCC patients to ahead curative managements

## Our tools:

 Advanced ablative techniques (technologies)
 Advanced imaging guidance
 > 2 leading strategies 1/ Real time 2/ Fusion For our patient : US fusion with pretherapeutic CT/MRI and general anesthesia: the standard set up for ablation in our institution



Large skin preparation for :

=> Free hand technique
=> In & Out plan US scan
guidance

Fusion for ALL ablation and for ALL patients :

- => Active patient tracker for ALL
- => Manual 3 extra-target points

coregistration

=> GPS marks on tumor(s) for adjustement







1 month after





#### 270 percutaneous 22





Section of applicators

Ablation zone



### **Centrifugal energy radiating devices** (1 or X applicators)

- (Multi) Monopolar RFA
- MWA



- Cryotherapy
- Laser

### **Centripetal energy deposition** devices (2 applicators at least)

- (Multi) Bipolar RFA 60%
- IRE 30%

Ablation: the best chance of first line curative treatment in HCC patients with cirrhosis



### First line ablation versus first line TACE improves survival in comparable HCC patients



# Take-home

# messages

- Overcoming many technical common contre-indications to percutaneous approaches, the use of advanced ablation technologies allows to treat in first line curative attempt most of early stages of HCC
- Effectiveness of any strategies consisting to delayed curative options (ablation, resection and transplantation) by using first line preparative or palliative treatments should be assessed in intention to treat analysis.

