

13TH PARIS HEPATOLOGY CONFERENCE (PHC) 2020 JANUARY 13, 2020-JANUARY 14, 2020

PATHOPHYSIOLOGY OF NAFLD AND NASH

MASSIMO PINZANI, MD, PhD, FRCP, FAASLD

Sheila Sherlock Chair of Hepatology UCL Institute for Liver and Digestive Health Royal Free Hospital, London, UK

Royal Free London	NHS

m.pinzani@ucl.ac.uk

www.ucl.ac.uk/medicine/liver-and-digestive-health

Disclosures (2020)

- 1. Inventor and patent holder ELF test (Siemens)
- 2. Speakers bureau: Echosens (Paris, France)

3. SAB/Consultancy: Promethera (Belgium); NeuroVive (Sweden); Chemomab (Israel); Median Technology (France/USA); Boheringer-Ingelheim (Germany); Takeda (USA)

- 4. Co-Founder and Director, Engitix Ltd (UCL Spin-out) (UK)*
- 5. Co-Founder and Director, 3P-Sense Ltd (UCL Spin-out) (UK)**
- 7. Chair EASL Consortium for Regenerative Hepatology (2019-2022)
- * Regenerative medicine and tissue engineering
- ** Nanotechnology diagnostics

Metabolic Defects Leading to Steatosis

Postic and Girard, J Clin Invest 2008;118:829

NAFLD: Natural History

NAFLD: Natural History

Adaptation of the Liver Lobule with Increasing Fat Accumulation

Micro-environmental predisposing condition to oxidative stress? Role of Autophagy?

Hall A et al., Scientific Reports 2017

Journal of Hepatology **2020** vol. 72 | 183–196

Autophagy in hepatic adaptation to stress

Younis Hazari^{1,2,3}, José Manuel Bravo-San Pedro⁴, Claudio Hetz^{1,2,3,5,*}, Lorenzo Galluzzi^{6,7,8,9,†}, Guido Kroemer^{4,9,10,11,12,13,*,†}

NAFLD: Natural History

Prevalent Mechanisms

Post-necrotic:

Viral Hepatitis, Autoimmune Hepatitis

Biliary:

Primary Biliary Cirrhosis Primary Sclerosing Cholangitis Secondary Biliary Cirrhosis

0

Chronic Wound Healing

Epithelial-Mesenchymal Disruption, Reactive Cholangiocytes, Bile salt toxicity. Deranged gutliver immunity?

Oxydative Stress, Reactive Aldehydes, Lipotoxicity

Pericellular:

Alcoholic Steatohepatitis Non Alcoholic Steatohepatitis (Haemochromatosis/ Wilson Disease)

Pathogenesis of NASH

Normal Liver

NAFLD/NASH

Pathways of Stellate Cell Activation in Liver Injury

Fibrotic Evolution of NASH

Steatosis with Pericellular Fibrosis

Fibrosis in NASH: A Chronic Wound Healing Response?

NASH Fibrosis: Stage-dependent Mechanisms

Pathways of Lipotoxic Liver Injury

Effectors and Targets of Lipotoxicity

EFFECTORS

Free fatty acids Free cholesterol Ceramides Sphingosines Phospholipids Leukotrienes

TARGETS

Mitochondria Lipid droplets Autophagy Cholangiocytes

Pathways of Lipotoxic Liver Injury

Neuschwander-Tetri Hepatology 2010;52:774C

Oxidative Stress a Common Denominator in Chronic Liver Diseases

Sources of Intracellular ROS and Related Intermediates in Chronic Liver Injury

Reactive Aldehydes induce a direct pro-fibrogenic effect in human HSC

Parola M. et al., Biochem Biophys Res Comm 1996; 222:261-264

Parola M. et al., J Clin Invest 1998; 102:1942-1950

Cellular Responses Following Increased Intracellular ROS

Intestinal Permeability and the Activation of Gut-Liver Innate Immunity

Pinzani M and Macias Barragan J. Expert Rev Gastroenterology and Hepatology 2010

NASH Fibrosis: Stage-dependent Mechanisms

PNPLA3 and NAFLD

Severity of liver disease

HCC

Variables	OR (95% CI)	P-value
PNPLA3 rs738409	2.26 (1.23-4.14)	0.0082
Age	1.24 (1.17-1.32)	<0.0001
Gender (Male)	11.11 (4.17-33.33)	<0.0001
BMI	0.94 (0.87-1.02)	0.148
Diabetes	2.33 (0.93-5.81)	0.070
Cirrhosis	9.37 (3.82-23.00)	<0.0001

Valenti et al. Hepatology 2010

Liu et al. J Hep 2014

PNPLA3 is required for HSC activation and its genetic variant I148M potentiates the pro-fibrogenic phenotype of human HSC

PNPLA3 expression increases with HSC activation Silencing PNPLA3 reduces HSC activation

PNPLA3 I148M confers a pro-inflammatory and pro-fibrotic profile

Bruschi F. et al. Hepatology 2017

Mutated PNPLA3 confers a pro-fibrogenic phenotype to human HSC

Bruschi F. et al. Hepatology 2017

Human HSC: Primary Genotyping for PNPLA3 I148M PNPLA3 SNP variant

Primary hHSC were isolated (n = 23 donors), cultured in 2D followed by genotyping for PNPLA3(I148M) and RNAseq data analysed with **Ingenuity** pathway analysis (IPA).

- WT PNPLA3 HSC: homozygous for Allele C (C/C)
- C/G PNPLA3 HSC: heterozygous for Allele C and G (C/G)
- G/G PNPLA3 HSC: homozygous for Allele G (G/G)

Caon E et al. 2020 unpublished

PNPLA3 (148M) SNP promotes the activation of human HSC through a dysregulated oxidative stress response

Caon E et al. 2020 unpublished

3D Human Healthy and Fibrotic Liver ECM

PNPLA3 (148M) SNP promotes the activation of human HSC through a dysregulated oxidative stress response

Cytoglobin B: HSC quiescence marker

VARS2: a mitochondrial enzyme involved in fatty acid metabolism

GSTT1, a Glutathione-S-Transferase

Caon E et al. 2020 unpublished

Cellular Cross-Talk in Liver Fibrogenesis

Lee et al., Gut 2015

Chemokines and NASH Progression

Fibrosis and NAFLD Outcome

Angulo et al., Gastroenterology 2015

Fibrosis in NASH: Still a Confused End-point!!!!

Despite liver fibrosis being the only end point currently a strong predictor of negative outcomes in NASH patients – it's not the most important factor to payers...

Which of the following clinical measures would you consider most important when assessing the costeffectiveness of a novel drug for the treatment of NASH. Percentage of MCO PD/MDs (n=30). Survey data collected December 2017.

NASH pipeline crowds at mid-stage, but has few advanced candidates

PHASE I (14 drugs)

 butanoic acid •CER209 •evogliptin •DUR928 •MK-4074 •OPRX-106 •PF06865571 •PF06882961 •PXS-5382A •RG-125 •RYI-018 •seladelpar •SGM-1019 •TVB-2640

PHASE II (29 drugs)

medications •ARX618 •BI 1467335 •DS102 •EDP-305 •emricasan •gemcabene •GR-MD-02 •GRI-0621 •GS-0976 •GS-9674 •IMM-124E •IONIS-DGAT2Rx •IVA-337

 lipaglyn •LJN452 •LMB763 •MGL-3196 •MN-001 •MSDC-0602K •NC101 •NGM282 •NS-0200 •ozempic •PF-05221304 •PF-06835919 •remogliflozin etabonate •SHP626 •TVB-2640 •VK2809

PHASE III (5 drugs)

•cenicriviroc

- •elafibranor
- •Ocaliva (obeticholic acid)
- •Selonsertib
- •aramchol

UCL ILDH Giuseppe MAZZA Krista ROMBOUTS Walid Al-Akkad Luca Frenguelli Lisa Longato **Kessarin Thanapirom** Maria Giovanna Vilia Elisabetta Caon Martina Marrali **Eric Felli Bailin Chen** Yutaka Yasui

Kevin Moore Douglas Thorburn

UCL Div. of Surgery

Brian Davidson Barry Fuller Amir Gander Joerg Pollock **Bettina Hansen**

UCL Cellular Pathology

Alberto Quaglia **Tu Vinh Luong** Andy Hall

UNIVERSITY OF CAMBRIDGE

Ludovic Vallier **Fotis Sampaziotis**

Royal Free London 🚺

Imperial College London

Armando Del Rio Hernandez Benjamin Robinson

Universita' di Pavia, Italy Antonio Di Sabatino Paolo Giuffrida

HARVARD APPARATUS

Partners

Academic Health Science Partnership

UCL Institute for Child Health, Div.

Of Surgery Paolo De Coppi Panagiotis Maghsoudlou Luca Urbani

University College London

Hospitals Biomedical Research Centre

CNBio innovations

