





**Prof. Manuel Romero-Gómez** 

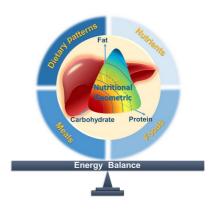
Digestive Diseases Unit. Virgen del Rocio University Hospital.

SeLiverGI. Institute of Biomedicine of Seville

University of Seville, Seville, Spain.







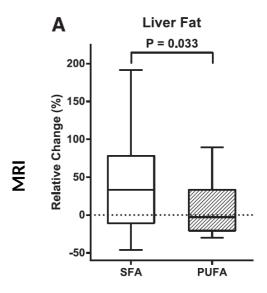

Association for the Promotion of Hepatologic Care (APHC)

# The mission for today

- 1. Macro- and micronutrients.
- 2. Aims of dietary modifications.
- 3. Mediterranean Diet.
- 4. Nutritional geometry.
- 5. Artificial Intelligence for personalized nutritional intervention in NAFLD.



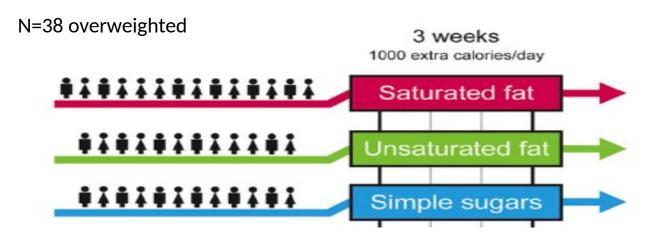



# Calories and fats PUFA vs. SFA



# Effect of type of fat in hyper-caloric high-fat diet in NAFLD

Dietary intake increase: Body weight modestly increased, not different between groups


| OW   | N=39    | 7weeks  | RCT            |
|------|---------|---------|----------------|
| Р    | SFA     | PUFA    |                |
| 0.45 | 500±550 | 632±499 | Δ Energy, kcal |
| 0.98 | 5±6     | 5±6     | Δ Fat, E%      |



Rosqvist F., Diabetes 2014

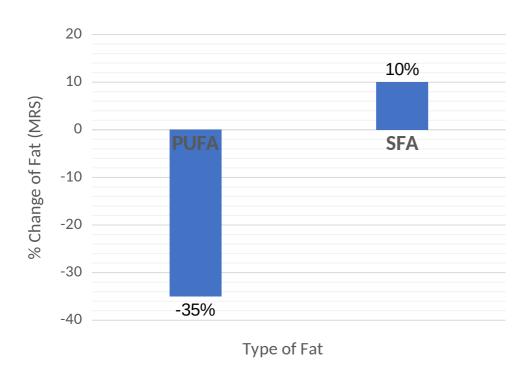
Simple

sugars



# $p_{ANOVA} = 0.03$ (SW 2.4 1.2 0.0

Unsaturated


Saturated

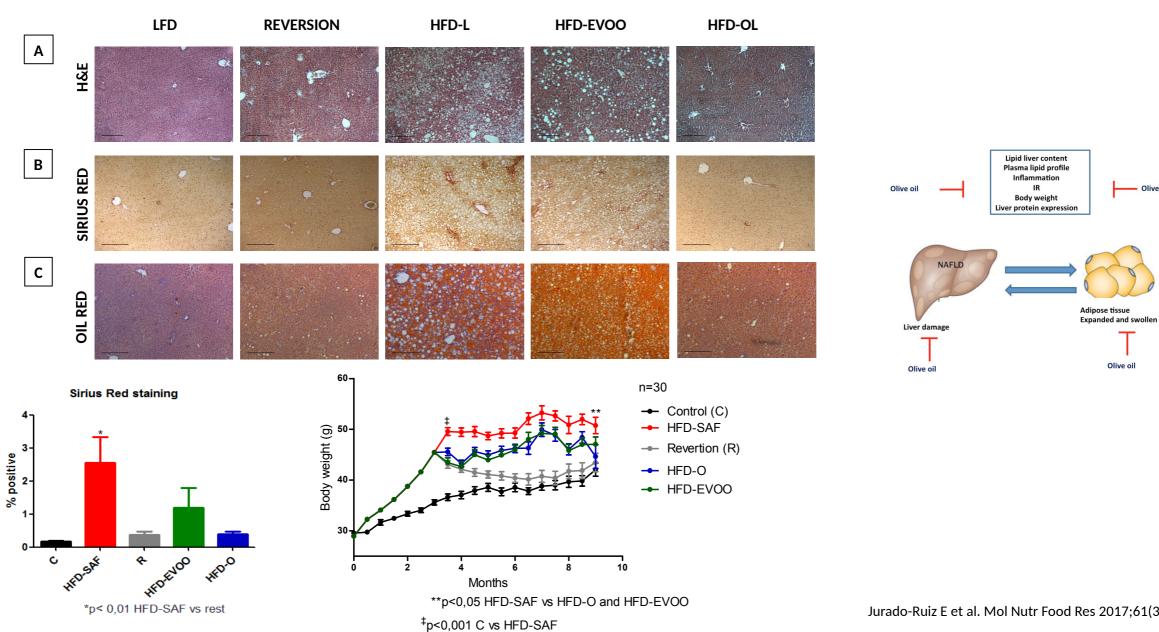
**Changes in IHTG between the groups** 

Luukkonen PK., Diabetes Care 2018

# Effect of iso-caloric diets

- RCT, 10 weeks
- 67 obese
- Body weight modestly increased, not different between groups




- RCT, 8-weeks
- 45 type-2 diabetes patients
- high-carbohydrate (52% vs. 40%)
- high-MUFA diet (28% vs. 16%/ kcal)
- Body weight remained stable



Type of Fat

# Olive oil protects against steatohepatitis

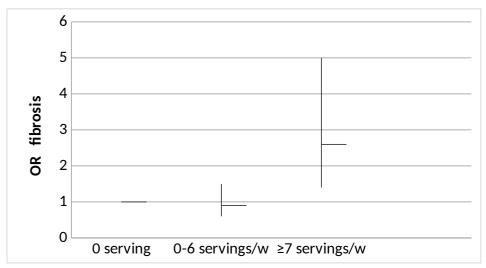
n= 5; Scale bars: 200 μm



Olive oil

Olive oil

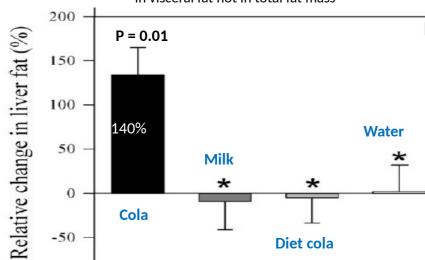
# The dark side of fructose


- n=47 overweight subjects
- Randomized to 4 different test drinks
- 1 L/d for 6 mo

| Milk | Coke |                    |
|------|------|--------------------|
| 47   | 106  | Carbohydrate (g/L) |
| 15   | 0    | Fat (g/L)          |
| 454  | 430  | Energy (kcal/d)    |



DNL (De Novo Lipogenesis) **Reduced satiety Increased VAT** Increase uric acid **NAFLD** 


341 NAFLD patients with liver histology data Reported fructose-containing beverages consumption



Adjusted age, gender, BMI, total calorie intake, serum lipids, uric acid and HOMA Abdelmalek MF., Hepatology 2010

### Sucrose-sweetened beverages increase liver fat - RCT

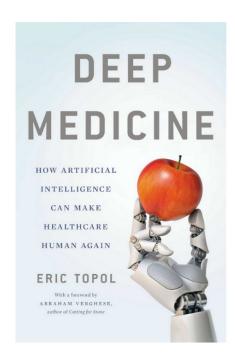
The regular cola group had greater increase in visceral fat not in total fat mass



Maersk M., Am J Clin Nutr 2012

- Cross-sectional study in Japan > Short dietary intake questionnaire > NAFLD diagnosed by US
- Fructose from fruits did not increase NAFLD risk i.e. in males (93.9g/1000 kcal/d (68-301.6) decreased NAFLD risk 0.68 (0.42-1.11);p=ns.




Tajima R., Nutrition 2018; Fernandez-Rodriguez C et al. REED 2019



Twittear



Bring on #PrecisionMedicine (the drug we all take multiple times a day that needs to be personalized most is food)



High-sugar diet, but not high-fat diet were associated with raised mortality and cardiovascular disease

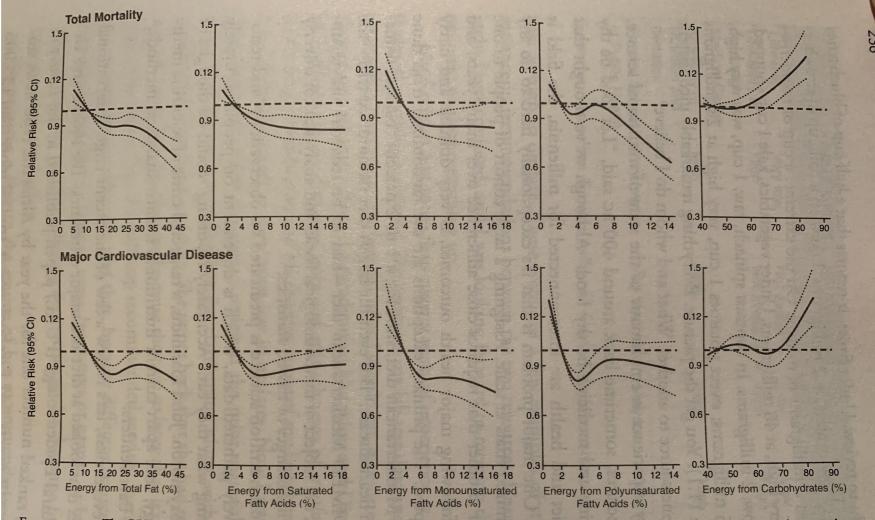



FIGURE 11.1: The PURE study association between estimated percent nutrients and all-cause (total mortality) and major cardiovascular disease. The dotted lines represent the 95 percent confidence intervals. Source: Adapted from M. Dehghan et al., "Associations of Fats and Carbohydrate Intake with Cardiovascular Disease and Mortality in 18 Countries from Five Continents (PURE): A Prospective Cohort Study," *Lancet* (2017): 390(10107), 2050–2062.

# Antioxidant, Antifibrotic, Immunomodulatory; Lipoprotective

Zinc

Copper

Iron

Selenium

Magnesium

Vitamin A, C, D, E

Choline

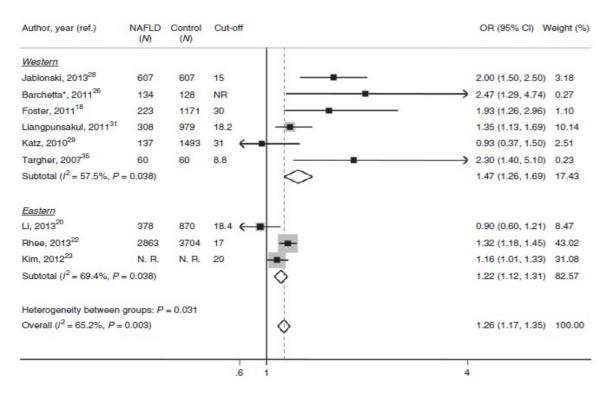
Carotenoids

Polyphenols (EVOO)

Micronutrients deficiency
(low intake, low levels)
linked to NAFLD
Effect in animal models
Supplementation did not
improve NAFLD

Improving NAFLD at US
Improving ALT/AST
Improving steatosis
NASH resolution
Fibrosis regression
HCC prevention








Salum E., Diabetes Res Clin Pract 2013

# **Vitamin D**

9 studies · n=5202 NAFLD · n=8520 controls

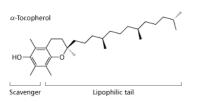


Eliades M., Aliment Pharmacol Ther 2013

Meta-analysis Vit D in NAFLD: Trials (n=9) comprising 467 participants. No significant effect of vitamin D supplement intake on ALT (-2.88 U/L; 95% CI, -6.03 to 0.27;  $I^2$  = 85%), AST (-0.10 U/L; 95% CI, -1.18 to 0.97;  $I^2$  = 26%), and γ-GT (0.12 U/L; 95% CI, -5.94 to 6.18;  $I^2$  = 38%).

# **Vitamin C**

Cross-sectional study NAFLD by US steatosis, NASH and fibrosis by FibroMax (n=714) Adjusted for: age, gender, energy intake, BMI, physical activity, SFA intake, smoking, alcohol, fibers, cholesterol, red and/or processed meat intake


## Vitamin C > 91.4 UI/1000Kcal (Upper tertile)



N=305 N=225 N=141 p=0.045 p=0.004 p=0.79

# The effectiveness of Vitamin E in NAFLD/NASH clinical trials

# Varying quality & Conflicting results



Vitamin E Lipophilic antioxidant

Improved steatosis and steatohepatitis but not fibrosis

| Study                    | Design | Intervention                                                                        | <u>Duration</u> | <u>Histology</u> | <u>ALT</u> |
|--------------------------|--------|-------------------------------------------------------------------------------------|-----------------|------------------|------------|
| Lavine et al. (2011)     | RCT    | Vit E 800IU + (n=58)<br>Vs. placebo (n=58)                                          | 24 mo           | +                | •          |
| Yakaryilmaz et al.(2007) | OL     | Vit E 800mg (n=9)                                                                   | 6 mo            | +                | +          |
| Dufour et al. (2006)     | RCT    | Vit E 800IU + UDCA (n=15) Vs. UDCA + placebo (n=18)                                 | 24 mo           | +                | +          |
| Sanyal et al. (2004)     | RCT    | or placebo + placebo (n=15)<br>Vit E 400IU (n=10)<br>Vs. Vit E+ pioglitazone (n=10) | 6 mo            | •                | •          |
| Vajro et al. (2004)      | RCT    | Vit E 800>100IU + diet (n=14)<br>Vs. diet + placebo (n=14)                          | 5 mo            |                  | •          |
| Harrison et al. (2003)   | RCT    | Vit C+ vit E 1000IU(n=23)<br>Vs. Placebo (n=22)                                     | 6 mo            | +                | •          |
| Kugelmas et al. (2003)   | RCT    | Diet + aerobic exercise +/- vit E<br>800IU(n=16)                                    | 2 mo            |                  | +          |
| Hasegawa et al. (2001)   | OL     | Vit E 300mg (n=22)                                                                  | 12 mo           | +                | +          |
| Lavine et al. (2000)     | OL     | Vit E 400-1200mg (n=11)                                                             | 4-10 mo         |                  | •          |

# Deficient choline intake is associated with fibrosis in NAFLD patients

Choline deficiency



Impaired synthesis of phosphatidylcholine, essential component of



Reduced secretion of liver triglyceride as VLDL

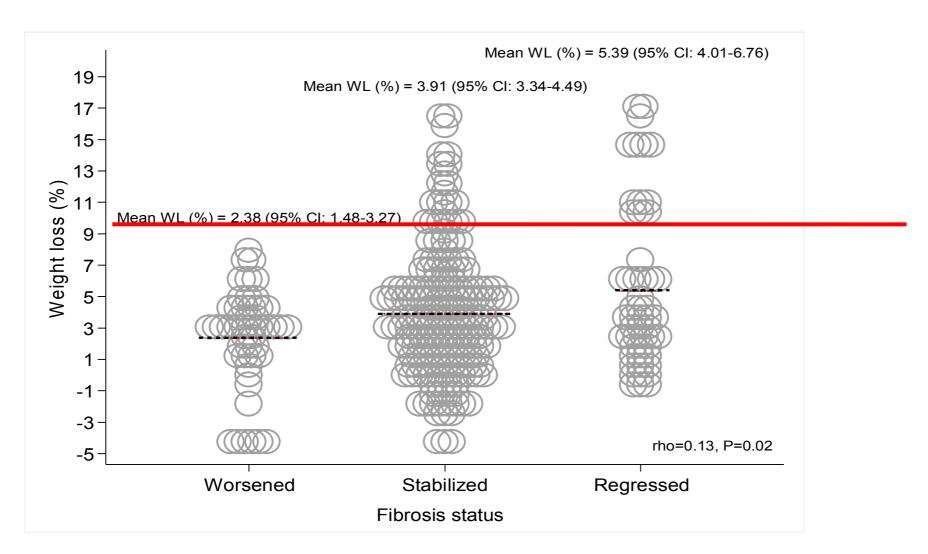
- lipoproteins Cross-sectional analysis of 664 NASH patients with liver biopsy
- A food-frequency questionnaire
- Deficient intake defined as 50% AI

| Fibrosis |                   | Steatosis |                   |                             |
|----------|-------------------|-----------|-------------------|-----------------------------|
| Р        | values            | Р         | values            |                             |
| 0.07     | 1.89 (0.94, 3.79) | 0.28      | 0.68 (0.33, 1.38) | Men ≥14 y old               |
| 0.05     | 2.55 (1.00, 6.48) | 0.35      | 1.57 (0.61, 4.06) | Premenopausal women ≥ 19 yo |
| 0.002    | 3.37 (1.58, 7.19) | 0.74      | 0.88 (0.42, 1.86) | Postmenopausal women        |

In conclusion, decreased choline intake is associated with worse fibrosis in a subset of patients with NASH; but:

- a) Is low choline intake associated with low plasma choline concentrations?;
- b) Is low choline concentrations associated with progression of NAFLD?;
- c) Could choline supplementation reverse this entity?.






# 52 weeks of lifestyle intervention

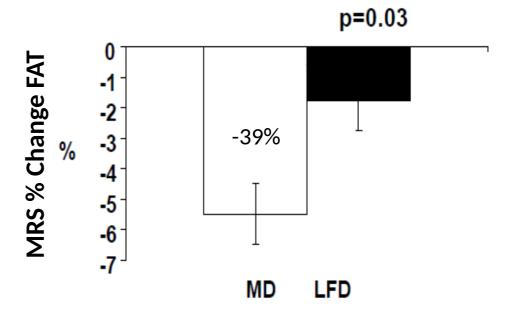


| % Weight loss (WL)      |     | 5%  | 7%  | 10%  |
|-------------------------|-----|-----|-----|------|
| NASH-resolution         | 10% | 26% | 64% | 90%  |
| FIBROSIS-regression     | 45% | 38% | 50% | 81%  |
| STEATOSIS improvement   | 35% | 65% | 76% | 100% |
| % Patients achieving WL | 70% | 12% | 9%  | 10%  |

# E. Correlations between WL and fibrosis status at the end of intervention



# Diet associations with NAFLD in an ethnically diverse population the Multiethnic Cohort


- Nested case-control
- 2,974 NAFLD cases
  - 518 with cirrhosis
  - 2,456 without cirrhosis
- 29,474 matched controls
- Cases identified using Medicare claims ICD9/10
- Controls individually matched to cases on birth year, sex, ethnicity
- FFQ

| (g/1,000 kcal/day)                    | NAFLD No Cirrhosis | <b>NAFLD With Cirrhosis</b> |
|---------------------------------------|--------------------|-----------------------------|
| Q 1 <sup>st</sup> vs. 4 <sup>th</sup> | OR                 | OR                          |
|                                       | (95% CI)           | (95% CI)                    |
| Cholesterol                           |                    |                             |
| ≤ 75.4                                | 1.00 (ref.)        | 1.00 (ref.)                 |
| > 121.4                               | 1.09 (0.96-1.23)   | 1.52 (1.15-2.01)            |
| P-value for trend                     | 0.0889             | 0.0018                      |
| Fiber                                 |                    |                             |
| ≤ 8.5                                 | 1.00 (ref.)        | 1.00 (ref.)                 |
| > 14.0                                | 0.86 (0.75-0.98)   | 0.75 (0.55-1.02)            |
| P-value for trend                     | 0.0123             | 0.1018                      |

| (g/1,000 kcal/day)                    | NAFLD No Cirrhosis | NAFLD With Cirrhosis |
|---------------------------------------|--------------------|----------------------|
| Q 1 <sup>ST</sup> vs. 4 <sup>th</sup> | OR                 | OR                   |
|                                       | (95% CI)           | (95% CI)             |
| Total red meat                        |                    |                      |
| ≤ 13.7                                | 1.00 (ref.)        | 1.00 (ref.)          |
| > 34.0                                | 1.10 (0.97-1.25)   | 1.43 (1.08-1.90)     |
| P-value for trend                     | 0.1190             | 0.0121               |
| Red unprocessed meat                  |                    |                      |
| ≤ 9.3                                 | 1.00 (ref.)        | 1.00 (ref.)          |
| > 24.1                                | 1.10 (0.97-1.25)   | 1.52 (1.15-2.01)     |
| P-value for trend                     | 0.1223             | 0.0033               |
| Processed red meat                    |                    |                      |
| ≤ 3.0                                 | 1.00 (ref.)        | 1.00 (ref.)          |
| > 10.0                                | 1.17 (1.03-1.32)   | 1.31 (0.99-1.71)     |
| P-value for trend                     | 0.0097             | 0.1123               |
| Total poultry                         |                    |                      |
| ≤ 11.4                                | 1.00 (ref.)        | 1.00 (ref.)          |
| > 27.6                                | 1.19 (1.05-1.35)   | 1.03 (0.79-1.35)     |
| P-value for trend                     | 0.0028             | 0.7717               |

# The Mediterranean diet improves hepatic steatosis RCT

| Low Fat Diet            | Mediterranean Diet          | Nutrient         |
|-------------------------|-----------------------------|------------------|
| 30% /kcal ω6 PUFA       | 40% /kcal<br>MUFA + ω3 PUFA | fat              |
| 50% /kcal               | 40% /kcal                   | Carbohydrate     |
| None                    | Daily                       | Olive oil & nuts |
| Fish 2/week, meat daily | Fish 3/w , meat 3/w         | Fish & meat      |



12 NAFLD patients

>> 6-week diets >> 1-2 kg weight loss in both

| Benefits of Mediterranean Diet                                                                                   |                                                                          |                              |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|--|--|
| Lipid metabolism                                                                                                 | Inflammation                                                             | Insulin Sensitivity          |  |  |
| Increases hepatocyte fatty acid oxidation<br>Reduces hepatic lipogenesis<br>Decreases serum triglycerides levels | Anti-inflammatory effect<br>Suppression of pro-inflammatory<br>cytokines | Improves insulin sensitivity |  |  |





Review

# Evaluation of Dietary Approaches for the Treatment of Non-Alcoholic Fatty Liver Disease: A Systematic Review

Naba Saeed <sup>1</sup>, Brian Nadeau <sup>1</sup>, Carol Shannon <sup>2</sup> and Monica Tincopa <sup>1,\*</sup> Metabolic N=317 patients; 6 RCT Diet Hepatic Weight loss 3/5 WL 3/5 HS imp 2/5 Triglyc MD **2/4 HOMA** Dietary pattern **LFD** 1/2 WL 1/2 HS imp IF 1/2 IF 1/2 HS imp **LCH** No WL 1 HS imp

REVIEW ARTICLE

Dan L. Longo, M.D., Editor

### Effects of Intermittent Fasting on Health, Aging, and Disease

Rafael de Cabo, Ph.D., and Mark P. Mattson, Ph.D.

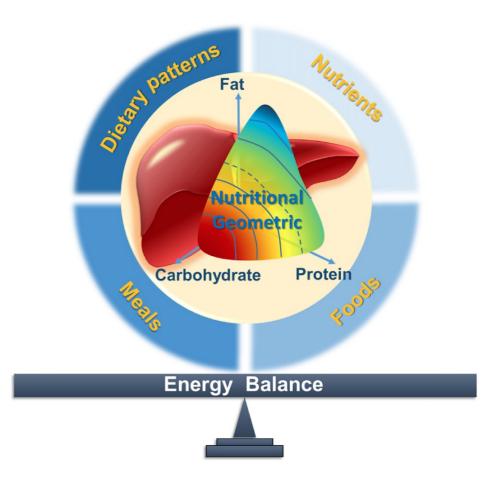


### Mediterranean Diet (MD)

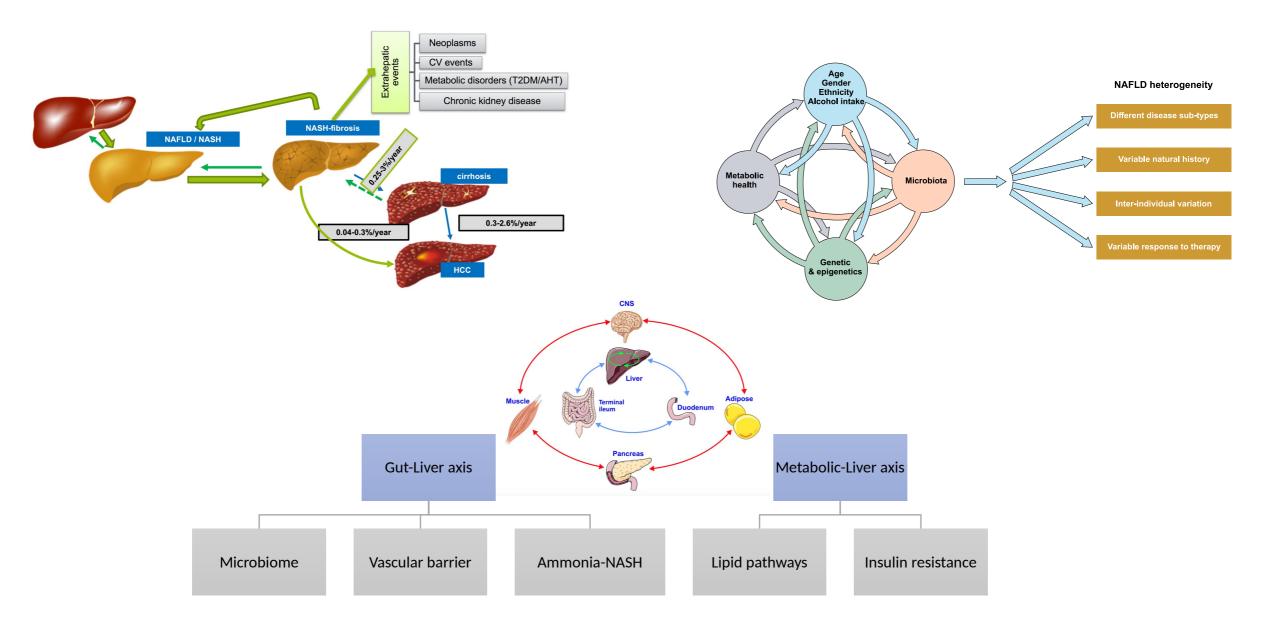
- Extra virgin olive oil
- Vegetables and Fruits
- \* Cereals, legumes, nuts
- Moderate intakes of fish and other meat, dairy products and red wine
- Low intakes of eggs and sweets.

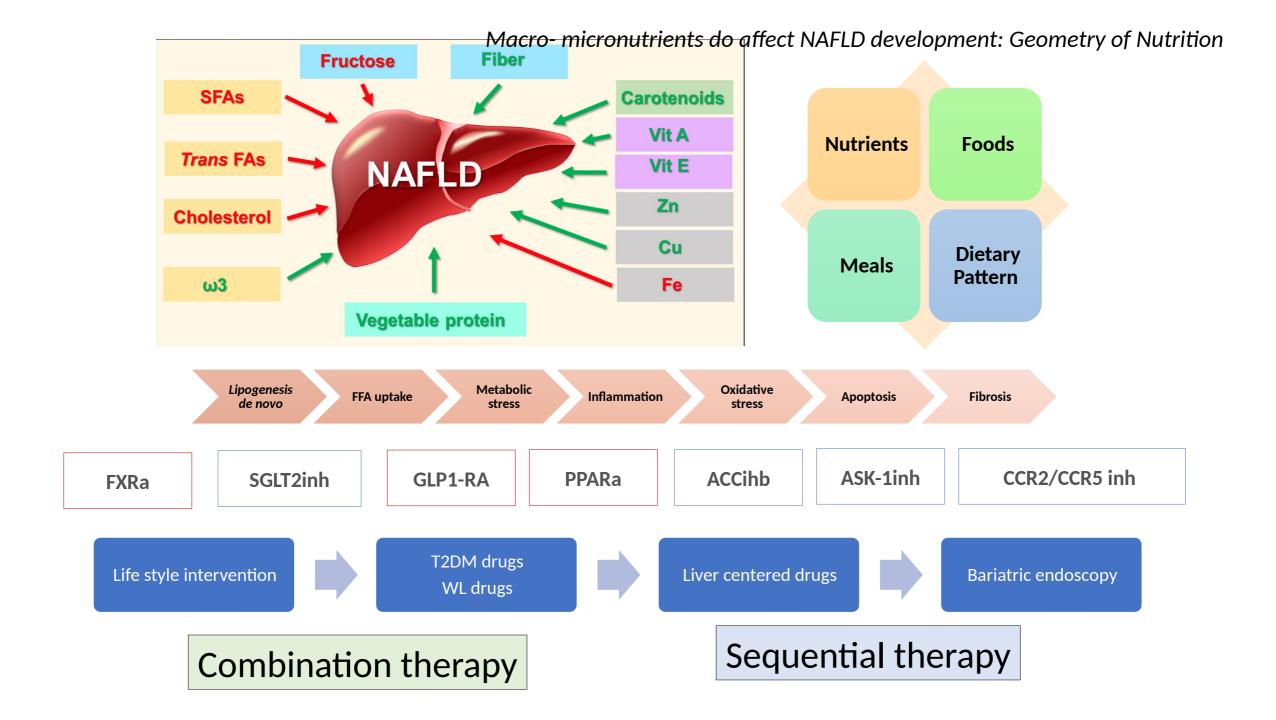
↓SFA ↑**MUFA** ↑**PUFA** 

↑protein vegetables ↓sugar fructose ↓cholesterol

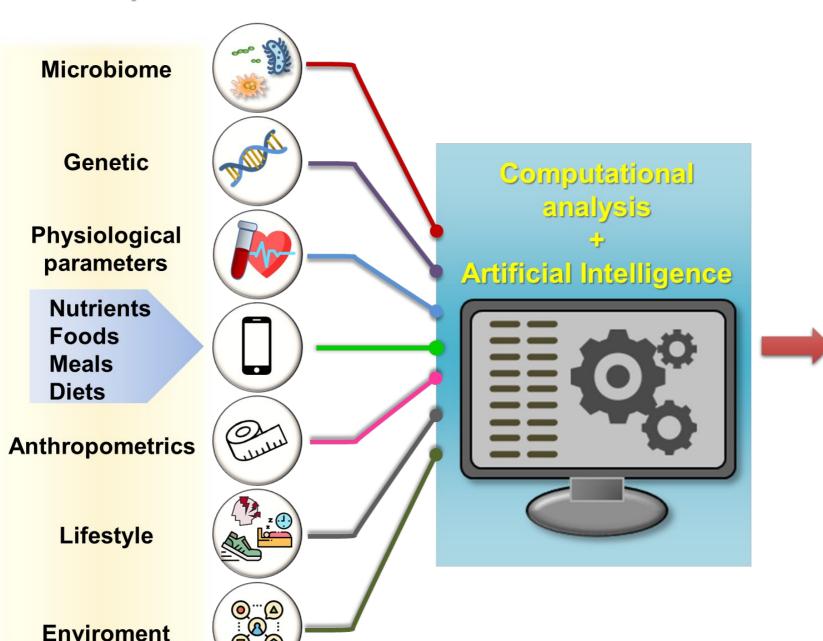

∱fiber

↑polyphenols, ↑carotenoids

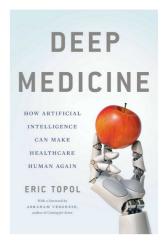

# Geometry of nutrition



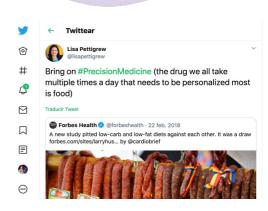

Green arrows represent nutrients that prevent NAFLD. Red arrows represent nutrients that promote NAFLD. SFAs: saturated fatty acids; Trans FAs: trans fatty acids;  $\omega$ 3: omega-3 fatty acids; Zn: zinc; Cu: copper; Fe: Iron.




# NAFLD: A Dynamic, heterogeneous and multiaxis disease







# **Measure personal features**



Barna G, Romero-Gómez M. Liver Intern 2020



Design personalized diet to NAFLD patients



# Take home messages

- 1. Dietary modifications have been shown to be effective in NAFLD.
- 2. Modifications in the composition of specific macro-or micro-nutrients in the diet are not a central point.
- 3. The Western diet is associated with a greater risk of disease progression in NAFLD while the Mediterranean diet with an improvement in NAFLD.
- 4. Nutritional geometry can be an excellent tool to study the relationships between the various aspects of diet and NAFLD pathophysiology.
- 5. The use of algorithms developed by artificial intelligence for personalized nutritional counselling would be useful to prevent and treat NAFLD.

# **THANK YOU to:**



Shira Zelber-Sagi Genoveva Barnà Franz Martin-Bermudo

