

EASL CPG on Occupational Liver Diseases

Massimo Colombo, MD

Head, Center for Translational Research in Hepatology Humanitas Rozzano, Italy.

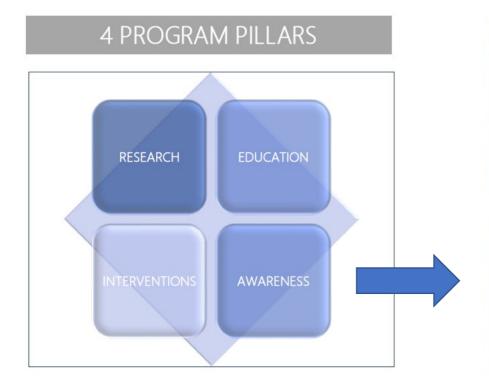
Chairman, EASL International Liver Foundation, Geneva, Switzerland

Financial Disclosures

Advisory committees: Merck, Roche, Novartis, Bayer, BMS, Gilead Science,

Tibotec, Vertex, Janssen, Achillion, Lundbeck,

GSK,


GenSpera, AbbVie, Alfa Wasserman, Intercept,

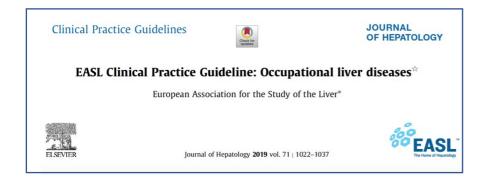
Target HCC,COST

Speaking and teaching: Tibotec, Roche, Novartis, Bayer, BMS, Gilead

Science, Vertex, Merck, Janssen, AbbVie, Intercept

EASL Foundation Committed to Shed New Light on OLD

Shedding new light on occupational liver disease


By leveraging skills and capabilities in the EASL scientific community, we are raising awareness of the importance of applying an evidence-based approach in the assessment of hepatic risks associated with occupational and environmental exposures.

Why a Clinical Practice Guideline on Occupational Liver Diseases (OLD)?

- ➤ Hepatotoxicity is the most common organ injury due to occupational and environmental exposures to industrial chemicals. Recommendations from liver societies not available.
- Like DILI and ethanol,OLD recapitulates an injury linked to gene/environment interaction.
- As of May 2011 > 60 million unique chemicals were registered with the Chemical Abstracts Service Registry.
- ➤ 33% of the 677 most common workplace chemicals reported in the National Institute of Occupational Safety and Health Pocket Guide are associated with hepatotoxicity. (Tolman and Sirrine 1998)
- The prevalence of OLD is undefined.

^{1.} Centre for evidence Based Medicine. Levels of evidence n.d. https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/,2.Aithal, et al. Clin Pharmacol Ther 2011;89:806–15.

EASL Clinical Practice Guideline on Occupational Liver Diseases (OLD)

Chair: Massimo Colombo, Milan

Panel members: Carlo La Vecchia, Milan

Marcello Lotti, Padua

M Isabel Lucena, Malaga

Christophe Stove, Ghent

Valerie Paradis, Clichy

Phil Newsome, Birmingham

Oxford grading of evidence

The Mission of CPG on OLD

SCOPE

Occupational chemical-induced liver injuries
 Not covered: viral infections in HCW and environmental pollutants

AIMS

- To provide standardization of nomenclature, definitions and classification of the type of liver injuries, based in part on the criteria used for DILI
- To increase awareness of OLD within the medical community and to improve recognition and management of affected patients in a standardized manner

^{1.} Centre for evidence Based Medicine. Levels of evidence n.d. https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/,2.Aithal, et al. Clin Pharmacol Ther 2011;89:806–15.

Occupational Liver Diseases

<u>Outline</u>

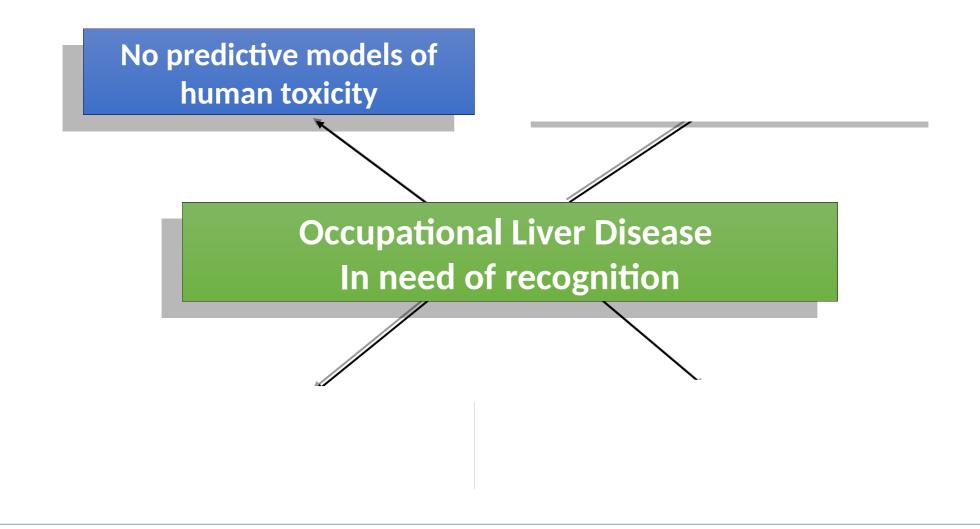
1. Challenges in obtaining the occupational history and diagnosis

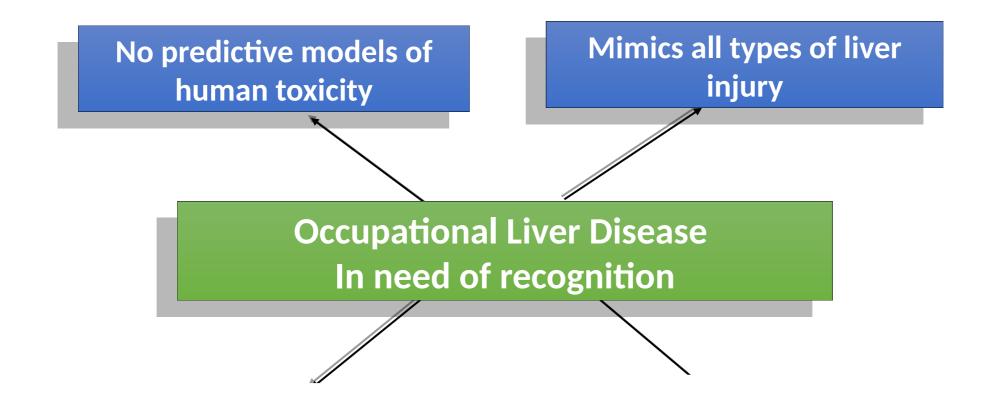
2. Clinical pathological spectrum

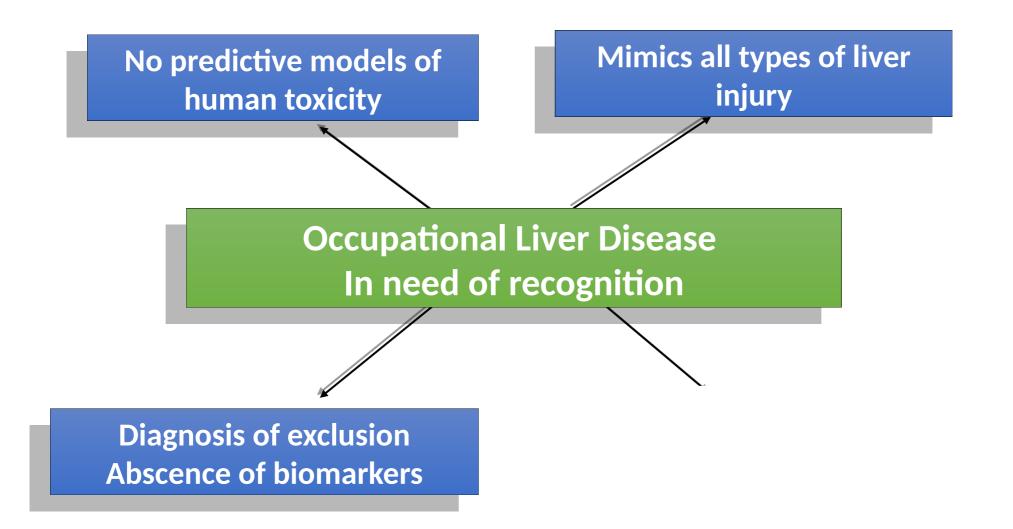
3. Liver tumours associated with exposure

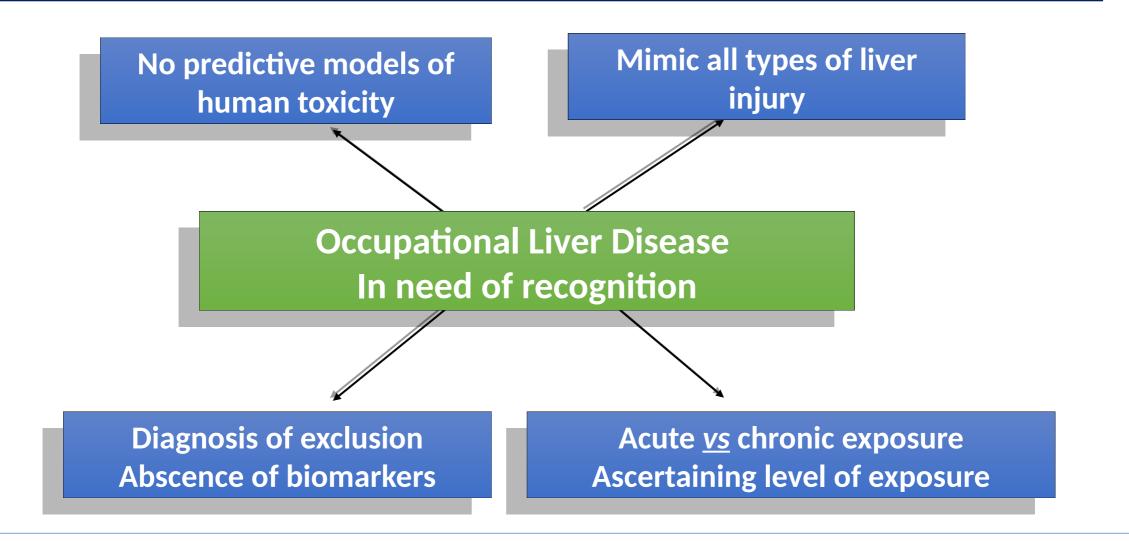
Collecting the Occupational History - 1

STRUCTURE OF THE OCCUPATIONAL HISTORY

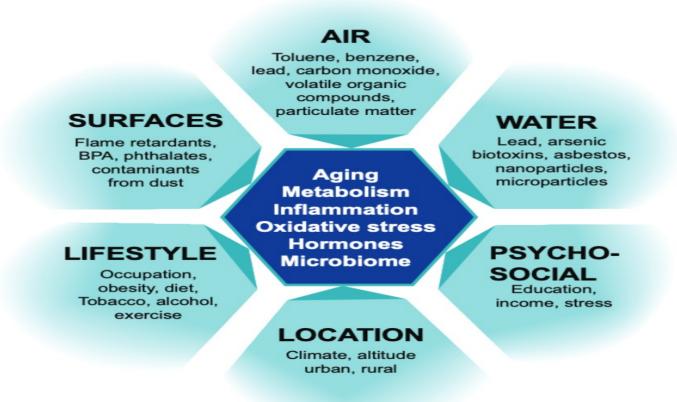

- A chronological summary of all work activities and their duration
- A detailed description of the work place, of the job and of a typical working day
- An inventory of all chemicals that are present and how are used.
- Details of any measures to limit chemical exposure such as: work place ventilation and the nature protective measures that are taken
- Enquiring if programs of industrial hygiene, biological monitoring and medical surveillance are or have been in place and retrive the result


Collecting the Occupational History - 2

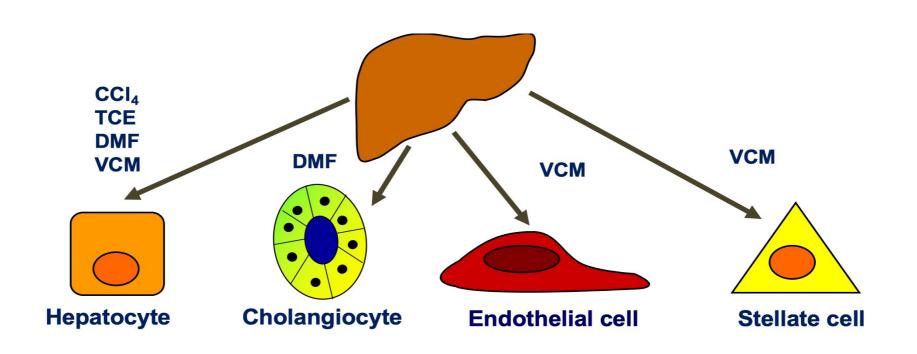

- Enquire as to whether coworkers have similar symptoms and signs to those of a patient with suspected OLD.
- Enquire if compensation procedures have been undertaken and results are available.
- Exposures to chemicals other than those present at work places, associated for instance with environmental air pollution, hobbies, recreational habits and others should be ruled out.


Assessment of OLD is improved by input from a multidisciplinary team including hepatologists, pathologists, occupational medicine physicians, toxicologists and epidemiologists Level 5 (expert opinion)

Occupational Liver Diseases


<u>Outline</u>

1. Challenges in obtaining the occupational history and diagnosis


2. Clinical pathological spectrum

3. Liver tumours associated with exposure

How Workers Get Exposed to Toxicants and Risk Modifiers

Clinico-Pathological Spectrum of OLD

Hepatitis Cholestasis Steatosis TASH Neoplasia Sclerosing cholangitis

Sinusoidal obstruction s. Peliosis Epithelioid hemangioendothelioma Angiosarcoma Periportal fibrosis Cirrhosis

Courtesy of Prof M Lucena

Acute OLD Rarely Occurs

Pathological pattern	Morphological feature	Toxicant	
Hepatocellular	Hepatocellular necrosis ± lobular inflammation	CCl ₄ , chloroform, toluene, TNT, PCBs, chloronaphtalene, DMF, hydrazine, 2-nitropropane, phosphorus, DMA, halothane, TCE, tetrachloroethane, 1,4-dichlorobenzene	
	Microvesicular steatosis	DMF	
Cholestatic/ Mixed	Cholestasis, cholangitis Combined features	Methylenedianiline Nitrobenzene, paraquat, methylenedianiline	
TAFLD	Steatosis (macro/microvesikular) Steato-hepatitis (steatosis + lobular inflammation + hepatocellular ballooning)	Chloroalkenes (PCE, TCE), VCM, chloroform, CCl ₄ , volatile organic compounds (benzene, toluene, styrene, xylene), dioxins, chlordecone, DMF, hydrazine, arsenic, mercury, lead (to be confirmed?), POPs, pesticides, and some nitro-organic compounds	
Vascular	Sinusoidal obstruction syndrome Peliosis	VCM, dioxin, pyrrolizidine alkaloids, arsenic, copper sulfate VCM	

Chronic Non Malignant OLD

- Possible excess risk of cirrhosis in workers exposed to VCM, bar staff of both sexes, male seafarers, caterers, cooks and kitchen porters (likely alcohol related).
- No consistent associations with other exposures

Toxicant associated steatohepatitis (TASH)

- Hepatic steatosis following different industrial chemical exposures¹
 Observations in Brazilian petrochemical workers²
- Asymptomatic or insidious onset, with normal liver tests that makes under-recognition probable

Selected Chemicals Associated with TASH in Humans or Animal Models

Steatohepatitis with normal	Steatohepatitis with elevated (or unknown)
transaminases	transaminases

Vinyl chloride Carbon tetrachloride

Tetrachloroethylene Dimethylformamide

Solvents (occasionally including VOCs)

Methylmercury

Nitrobenzene Pesticides: chlordecone, atrazine, paraquat

Nitromethane Polychlorinated biphenyls

Yellow phosphorus

1,1,2-Trichloroethane

VOCs (occasionally)

Arsenic

Lead

Toxicant Associated Steatohepatitis (TASH) in Petrochemicals Workers +/- Associated Metabolic Conditions

Risk factors associated with NASH: G1 Exposure to chemicals

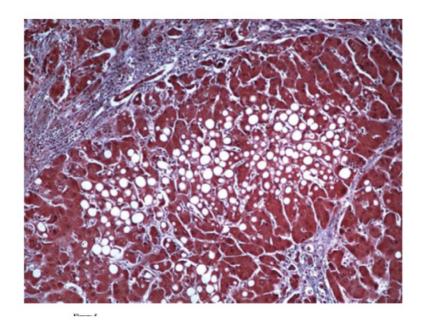
G2 Exposure + metabolic conditions

G3 No exposure, + metabolic conditions

	G1	G2	G3
	n=31	n=30	n=23
Age (y)	37	39	48
			P 0.002
Male	30	30	17
	(97)	(100)	(74)
Obesity	0	8	10
		(27%)	(43)
Hyperlipidemia	0	20	7
		(67%)	(30)
Diabetes	0	2	6
		(6 %)	(26)

Histological findings	G1	G2	G3
(n,%)	n=31	n=30	n=23
Steatohepatitis	9 (29)	6 (20)	11 (48)
Steatohepatitis + fibrosis	22 (71)	24 (80)	12 (52)
Cirrhosis	0	0	2
Cholestasis	16 (52)	12 (40)	3 (13)
			P=0.002

Toxicant Associated Steatohepatitis (TASH) in Non Obese VC Workers


Highly exposed:

steatohepatitis in 80%. Of these, 55% had fibrosis and 18% had hemangiosarcoma.

Table 6. Serum Proinflammatory Cytokine and Antioxidant
Activity Levels

Laboratory Variable	Healthy Unexposed Controls	Healthy Chemical Worker Controls	TASH
TNF-α (pg/mL)	4.1 (1.5)	3.0 (1.2)	11.2 (18.0)*
$IL-1\beta$ (pg/mL)	0.1 (0.1)	0.4 (0.6)	9.1 (11.9)†,‡
IL-6 (pg/mL)	1.4 (1.6)	3.5 (3.0)	10.9 (10.6)†,§
IL-8 (pg/mL)	2.7 (1.9)	3.7 (1.6)	12.0 (12.9)†,§
MCP-1 (pg/mL) Antioxidant activity	276.5 (121.5)	329.4 (137.9)	302.3 (148.0)
(mM)	4.1 (0.3)	3.5 (0.8)	2.6 (0.3)‡,

Liver Biopsy of a Vinyl Chloride Worker with TASH and Cirrhosis

100x hematoxylin-eosin

Occupational Liver Diseases

<u>Outline</u>

1. Challenges in obtaining the occupational history and diagnosis

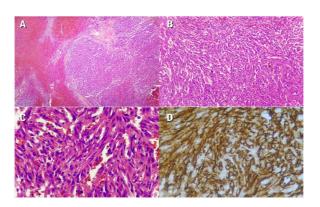
2. Clinical pathological spectrum

3. Liver tumours associated with exposure

Hepatic Angiosarcoma(HAS)

M : F = 4 to 1,60-70 yr

- Background liver disease
- Abdominal pain, weight loss, malaise, portal hypertension, hemoperitoneum, extrahepatic metas.


<u>Diff.diagnosis</u> HEHE,KS,benign vascular tumors,metas.

Risk factors Thorotrast,VC monomers,arsenic,radiations,

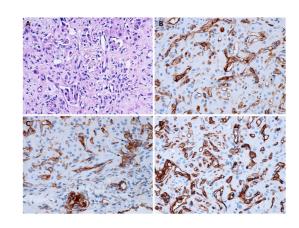
drugs and chronic liver diseases.

Hypervascular mass in S2 and S3

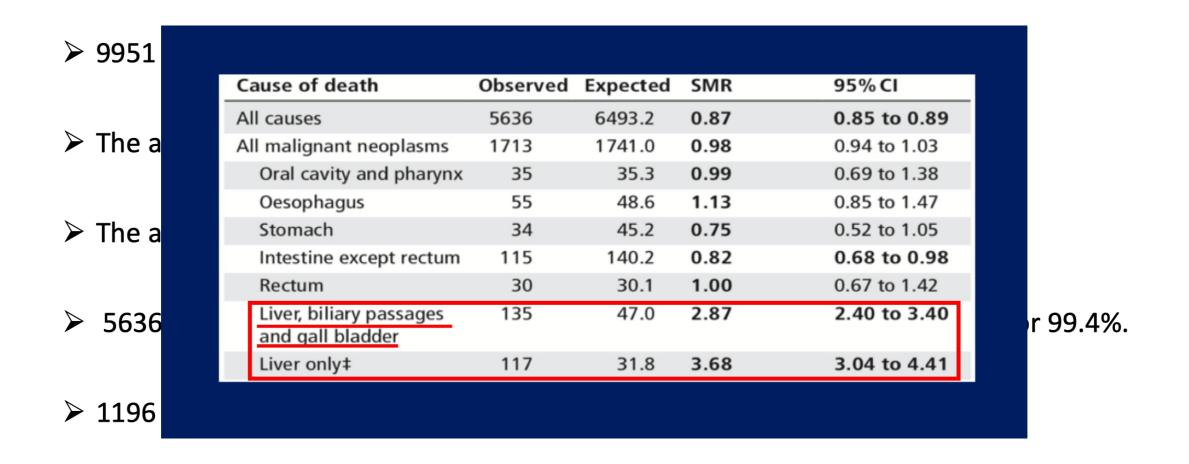
X100 HE stain. Fusiform cells with pleiomorphic nuclei lining the sinusoids, areas of hemorrhage and necrosis.

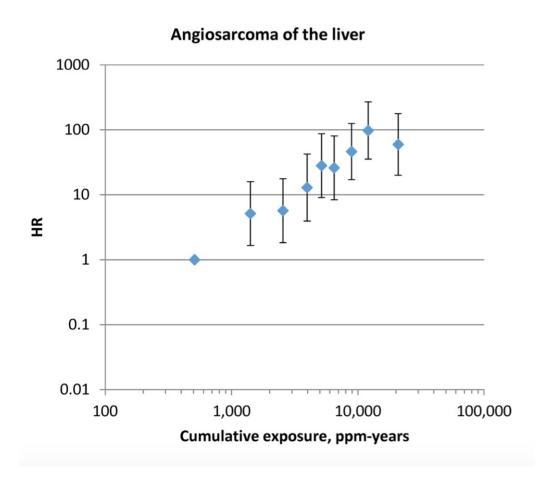
Hepatic Epitelioid Hemangioendotelioma(HEHE)

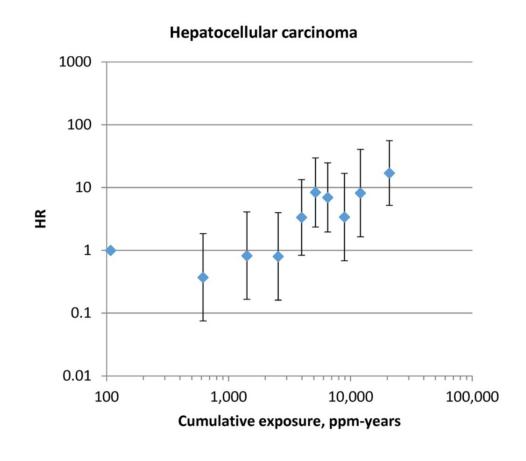
M: F = 3 to 2, 30-40 yr


- No background liver disease
- From no symptoms to oligosymptomatic → portal hypertension,VOD

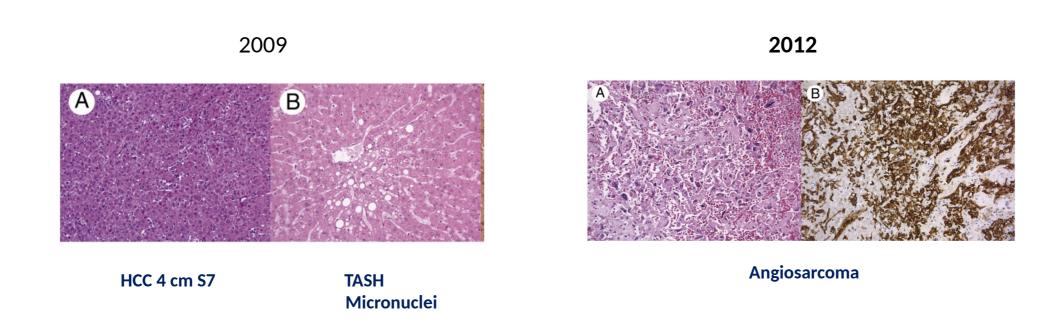
<u>Diff. diagnosis</u> AS, KS, metas, VOD, Budd Chiari


Risk factors OC,alcohol,VH, VC & asbestos


Lollipop sign



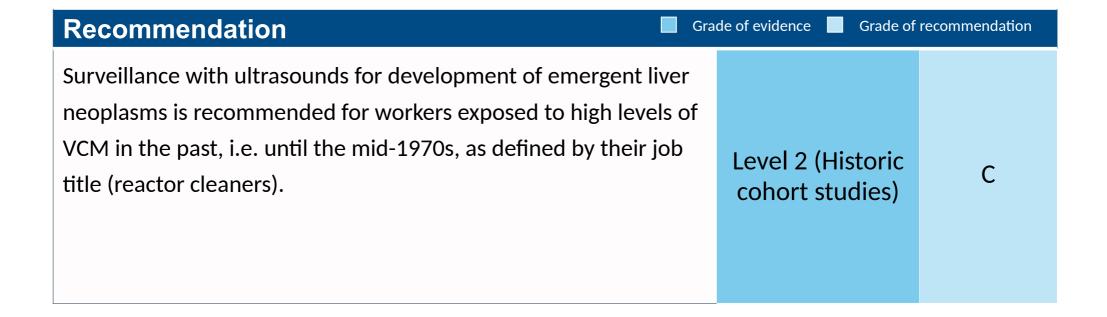
Liver Cancer Mortality in Vinyl Chloride Exposed Workers 35 Plants in the USA


Liver Cancer Mortality in Vinyl Chloride Exposed Workers 35 Plants in the USA

Sequential Development of HCC and Liver Angiosarcoma in a Vinyl Chloride Exposed Worker

- > 78 y.o. autoclave cleaner exposed from 1991 to 1996 to vinyl chloride (4100 ppm/yr)
- However: KRAS G12D point mutation in AS not in HCC

OLD.Liver Malignancies


Vinyl chloride monomer(VCM) and liver AS and HCC

- High exposure to VCM until the early 70's has been associated to a substantial excess risk of liver AS [63/10,000 US workers, f-up 40 yrs]¹.
- Possible association with HCC.

Controversial associations with liver cancers

 Trichloroethylene and other chlorinated solvent-exposed workers, workers exposed to polychlorinated biphenyl and workers exposed to pesticides.

Surveillance with US for Workers Highly Exposed to VCM

Approach to the Assessment and Diagnosis of OLD

OVERT LIVER INJURY/ABNORMAL LIVER PROFILE TESTS SUSPICION OF OLD - TASH **DEFINE SPECIFIC PHENOTYPE OCCUPATIONAL KNOWN CHEMICAL EXPOSURE HISTORY HEPATOTOXIN** INTENSITY/LENGTH **Confounding factors: ETIOLOGICAL ASSESSMENT** - NAFLD **ACCORDING TO CLINICAL CONTEXT** - Alcohol abuse - Pre-existing chronic liver disease **DIAGNOSIS OF OLD** - Drug therapy: tamoxifen, amiodarone, MANAGEMENT methotrexate

FOLLOW-UP ASSESSMENT

- Acute liver injury
- Fibrosis/cirrhosis
- Vascular disease
- Neoplasm

Search for:

- Presence of other organ involvement -Hypersensitivity / autoimmune manifestations

characterize the phenotype

Rule out:

- DILI

- Viral/infectious hepatitis

- Biliary obstruction

- Alcoholic hepatitis

- Ischaemic injury

Usually required to

Liver biopsy:

- Autoimmune hepatitis

Take Home Message

- ➤ Collecting the occupational history is crucial. Patients must be assessed by a multidisciplinary team.
- > Acute liver disease is rare compared to chronic liver injury. There are many sensitizing cofactors.
- Liver angiosarcoma is clearly associated with high exposure to vinyl chloride (in the past only), HCC is possible, cirrhosis is unlikely.
- > Hepatitis and cholestasis are the dominant occupational lesions, often obscured by comorbidities such as alcohol and metabolic steatohepatitis.
- > The unmet needs : availability of specific tests of toxicity.

Unmet Needs and Future Research

- A step forward in improving safety in the workplace is collecting cohort data from occupational exposure registries including clinical, biochemical and follow-up information in order to obtain incidence figures of hepatotoxicity and trends in re (emerging) OLD.
- The development and quantification of sensitive and specific biomarkers of liver damage caused by toxicants that may help in fine-tuning of differential diagnosis, without the need for histological examination of the liver. Could provide clues to prognosis.
- Advancements in the field of biomarkers would allow more effective risk stratification algorithms, while providing mechanistic insights that would help the development of safe and effective treatments.