

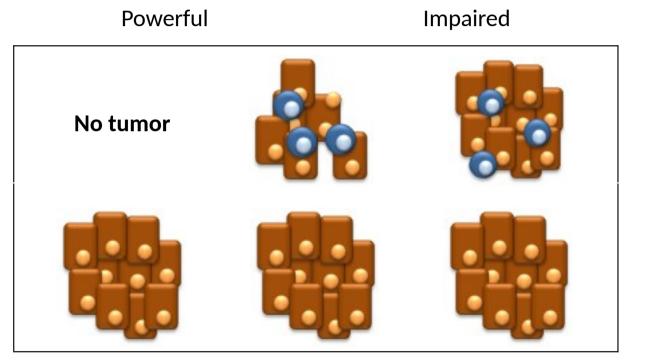
Immunotherapy in HCC - When and How

Prof. Bruno Sangro Clínica Universidad de Navarra. IdISNA. CIBERehd. Pamplona, Spain

Financial Disclosures

I have received fees from the following companies and concepts over the last five years

- *Consultancy*: Adaptimmune, Astra Zeneca, Bayer, BMS, BTG, Eisai, Eli-Lilly, Ipsen, Medimmune, Merck, Onxeo, Roche, Sirtex, and Terumo.
- Lectures: Bayer, BMS, Ipsen, Medscape, Sirtex.
- *Research*: BMS and Sirtex.

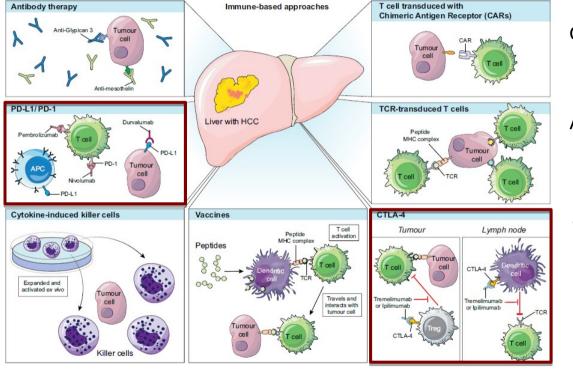

Immune Rejection of Cancer

T cell response

Strong

Antigenicity

Absent

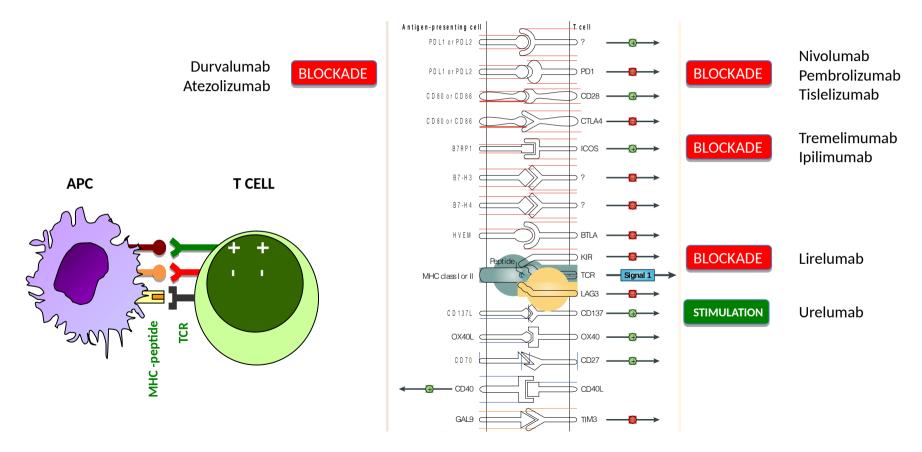


Immune-Based Therapies for HCC

(anti-GP3) Nivolumab Pembrolizumab Durvalumab Atezolizumab

CIK cells

Codrituzumab

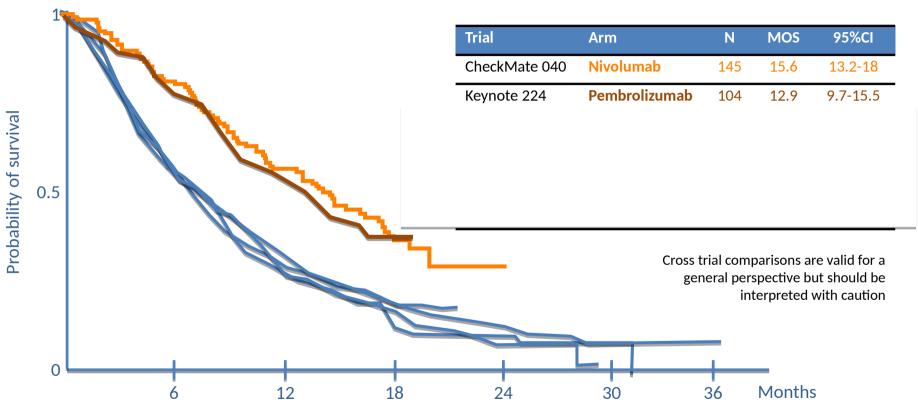

CAR-GPC3 T cells

AFP SPEAR T cells

Tremelimumab Ipilimumab

IMA970A + CV8102 (multipeptide + RNAadj)

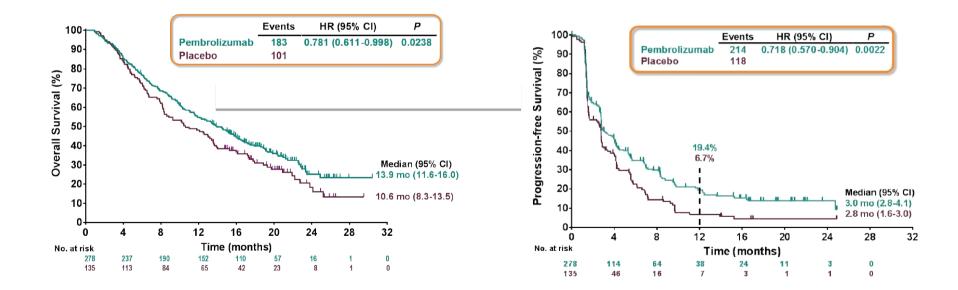
Immune Checkpoint Inhibitors



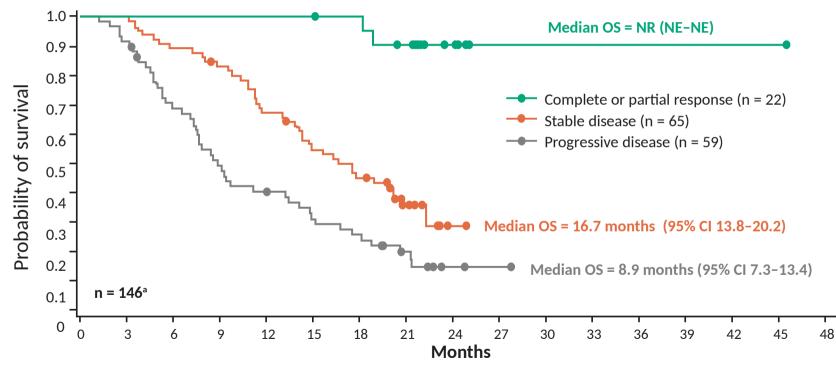
Checkpoint Inhibitors as 2L Therapy in HCC

	Nivolumab	Pembrolizumab
Sample size	154 sorafenib-treated patients	104 sorafenib-treated patients
Patient features	2L or 3L Sorafenib-intolerants allowed Effective therapy for HBV+ve patients	2L Sorafenib-intolerants allowed Effective therapy for HBV+ve patients No involvement of portal vein trunk
Response rate	14% regardless of etiology or AFP levels	17%
Duration of response	16.6 months in HCV patients, not reached in other etiologies	≥9 months in 77%
mOS	15.1 months (95% CI 13.2-18.8)	12.9 months (95% CI 9.7-15.5)

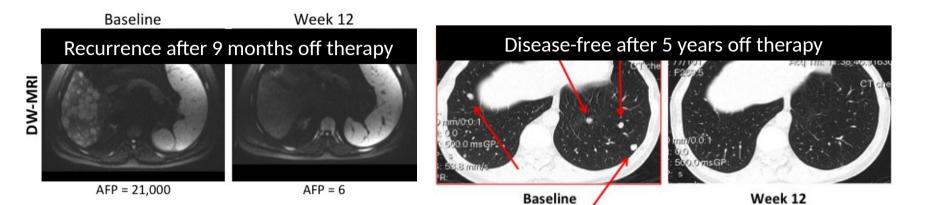
Phase 2 Trials with PD-1 Inhibitors


Survival of Advanced HCC in 2L Trials

El-Khoueiry AB et al. Presented at ASCO-Gl 2018; Zhu AX et al. Presented at ASCO 2018; Llovet JM et al. J Clin Oncol 2013; Zhu AX et al. JAMA 2014; Zhu AX et al. Lancet Oncol 2015; Bruix J et al. Lancet 2017; https://www.onclive.com


Pembrolizumab as a 2L Agent in HCC (Keynote-240)

413 patients randomized to Pembrolizumab 200 mg Q3W or placebo + best supportive care

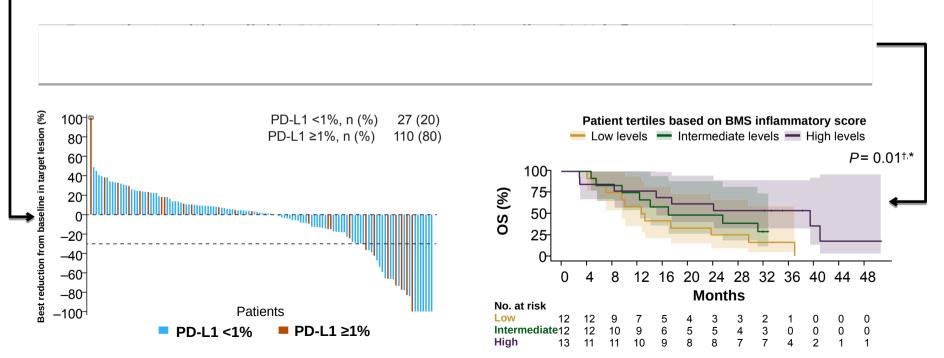

Clinical Trials with PD-1 Inhibitors (Nivolumab)

Response and Survival Among Sorafenib Experienced Patients

^aBest overall response was not able to be determined in 8 patients.

Deep Responses to Nivolumab

Disease-free after 1 year off therapy


Baseline

12 months

CM040 Biomarker Analysis

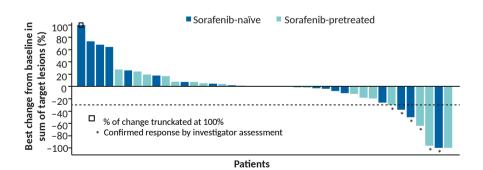
Sorafenib-experienced population, n = 137

Deep responses and robust OS were observed regardless of tumor cell PD-L1 status

□ % change truncated to 100%.

^aBest change is based on evaluable target lesion measurements up to progression or start of subsequent therapy.

CM040 Child B Cohort

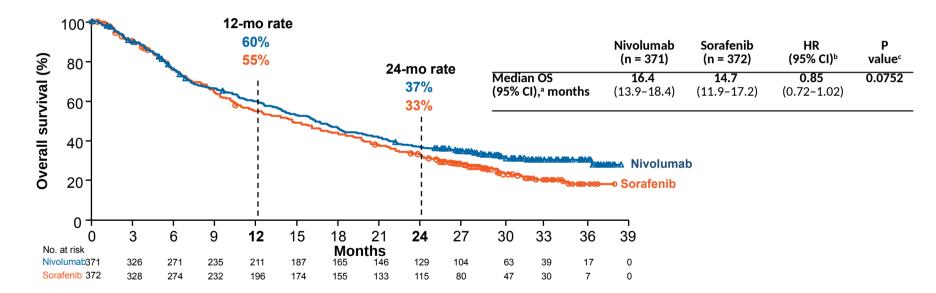

Advanced HCC Sorafenib-naïve o pre-treated, intolerants or progressors

Nivolumab 240 mg flat dose IV over 30 min Q2W

Survival Follow-up

Tretament until progression by RECIST v1.1 or unacceptable toxicity

- Objective response rate (INV RECIST v1.1): 12.1 %
- Disease control rate (INV RECIST v1.1): 55.1 %

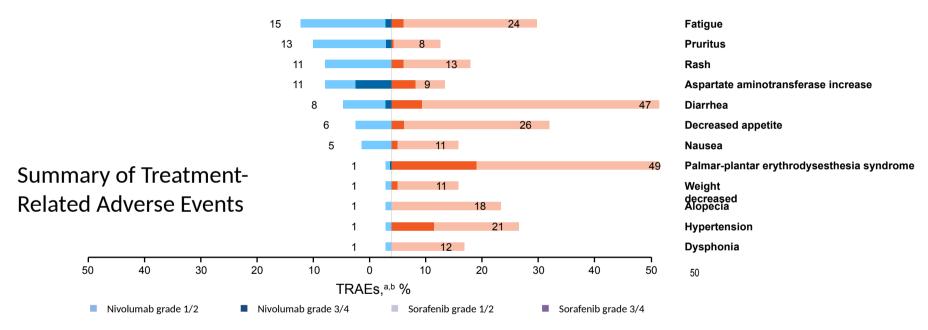

	Child Due	h Da		uch A
	Child-Pugh Bª N = 49		Child-Pugh A N = 262	
%	Any Grade	G 3-4	Any Grade	G 3-4
TOTAL	51	24.5	78.6	22.5
Cutaneous disorders	22.4	24.1	39.3	2.3
General disorders	14.3	0	32.1	1.5
Hematologic disorders	10.2	2.0	8.8	2.3
Gastrointestinal disorders	10.2	4.1	34.7	2.7
Metabolic disorders	8.2	2.0	14.9	2.7
Nervous system disorders	6.1	0	8.4	0
Infections and infestations	4.1	0	1.9	0
Muscleskeletal disorders	4.1	0	11.5	0.4
Endocrine disorders	2.0	0	6.5	0.4
Hepatic TRAEs ^b				
Blood tests	12.2	8.2	28.2	14.1
Increased AST	4.1	4.1	10.3	5.7
Increased ALT	2.0	0	9.9	3.8
Increased liver tests	2.0	0	0.4	0.4
Hepatobiliary disorders	6.1	6.1	2.7	0.4
Hypertransaminasemia	4.1	4.1	0.8	0
Altered liver function	2.0	2.0	NR	NR
Hyperbilirubinemia	2.0	0	1.1	0

• Database lock: November 8, 2018

• Data from cohorts 1 and 2 of CheckMate 040 are presented for indirect comparison

Nivolumab as a 1L Agent in HCC (CheckMate-459)

743 patients randomized to Nivolumab 240 mg Q2W or Sorafenib 800 mg/d

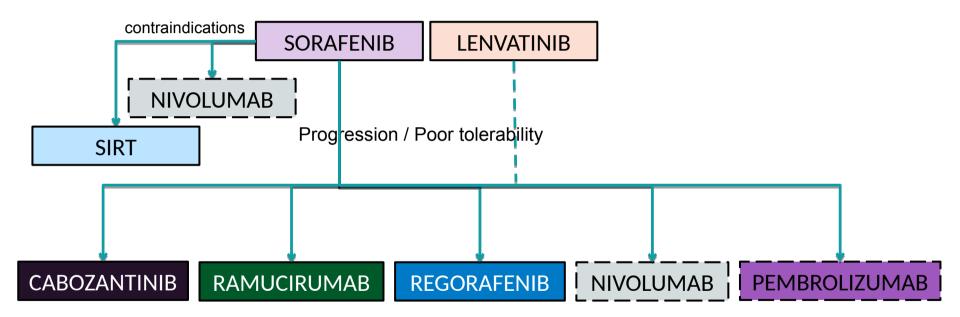


• The predefined threshold of statistical significance for OS with nivolumab was not met, although nivolumab demonstrated clinical benefit.

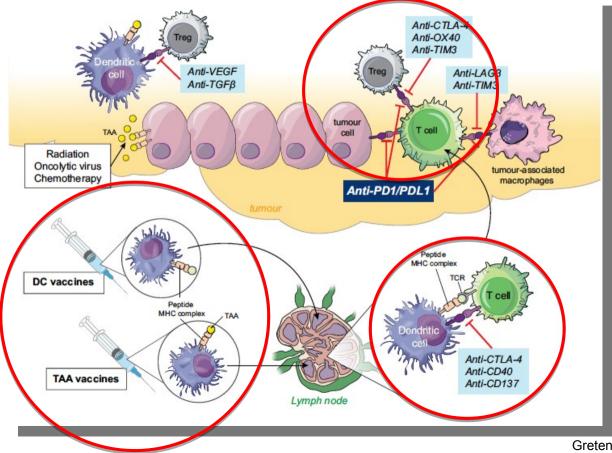
• 140 patients (38%) in the nivolumab arm and 170 patients (46%) in the sorafenib arm received subsequent systemic therapy

^aBased on Kaplan–Meier estimates; ^bStratified Cox proportional hazards model. HR is nivolumab over sorafenib; ^cP value from log-rank test; final OS boundary: 0.0419 for a 2-sided nominal P value. HR, hazard ratio.

Nivolumab as a 1L Agent in HCC (CheckMate-459)



- Nivolumab demonstrated an improved safety profile compared with sorafenib, with fewer grade 3/4 TRAEs and TRAEs leading to discontinuation versus sorafenib
 - Grade 3/4 TRAEs were reported in 81 patients (22%) in the nivolumab arm and 179 patients (49%) in the sorafenib arm

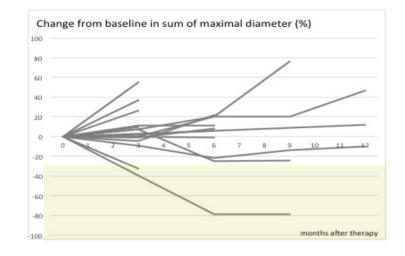

^aEvents occurring in > 10% of patients in either treatment arm. data labels represent rates of any-grade events; ^bOne grade 5 event was reported in the nivolumab arm (cerebrovascular event), and 1 was reported in the sorafenib arm (hepatic failure). TRAE, treatment-related adverse event.

Yau T, et al. Presented at ESMO 2019

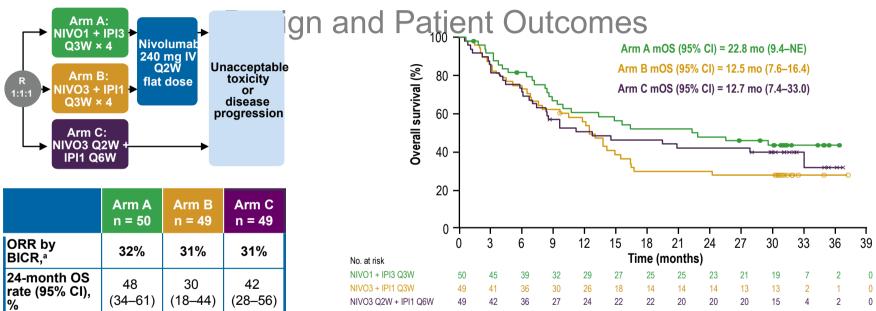
Systemic Therapy of HCC 2019

Improving the Effect of PD-1/PD-L1 Blockade

Greten and Sangro. J Hepatol 2017.

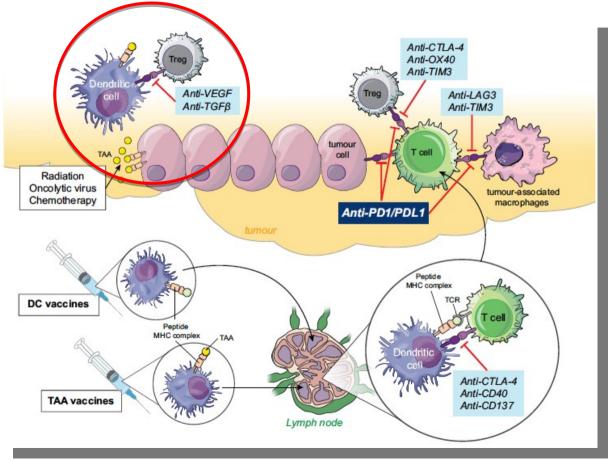

A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C^{\star}

Bruno Sangro^{1,2,*}, Carlos Gomez-Martin³, Manuel de la Mata^{4,2,5}, Mercedes Iñarrairaegui^{1,2}, Elena Garralda³, Pilar Barrera^{4,2}, Jose Ignacio Riezu-Boj⁶, Esther Larrea⁶, Carlos Alfaro⁷, Pablo Sarobe⁶, Juan José Lasarte⁶, Jose L. Pérez-Gracia⁷, Ignacio Melero^{6,7,†}, Jesús Prieto^{1,2,6,†}


Facing the dawn of immunotherapy for hepatocellular carcinoma

Martin F. Sprinzl, Peter R. Galle*

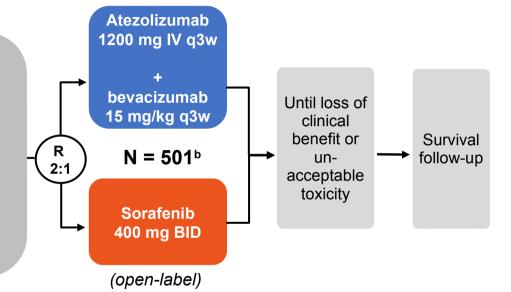
- Single agent Tremelimumab
- 17 (21) patients evaluable
- 100% HCV infected
- 18 % response rate (Inv RECIST 1.0)
- 76 % disease control rate
- 6.4 months median TTP



CM040 Nivolumab Plus Ipilimumab Combination Cohort

- Similar ORR, DCR, and DOR were observed across arms, with consistently high ORR (> 30%)
- Patients in arm A had the highest CR rate (8%) and most promising mOS of 22.8 months • By BICR using RECIST v1.1. Defined as complete response + partial response. NE, not estimable. Sangro B, et al. Presented at AASLD 2019

Improving the Effect of PD-1/PD-L1 Blockade


IMbrave150 study design

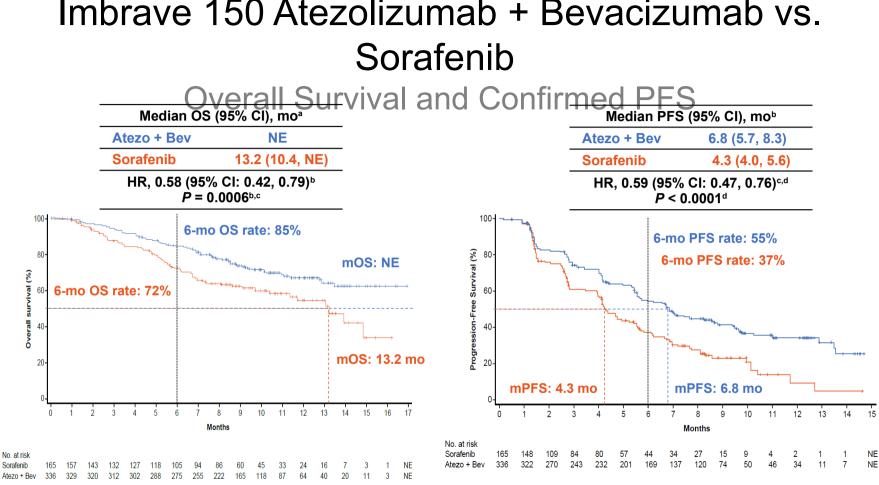
Key eligibility

- Locally advanced or metastatic and/or unresectable HCC
- No prior systemic therapy

Stratification

- Region (Asia, excluding Japan^a/rest of world)
- ECOG PS (0/1)
- Macrovascular invasion (MVI) and/or extrahepatic spread (EHS) (presence/absence)
- Baseline α-fetoprotein (AFP; < 400/≥ 400 ng/mL)

Co-primary endpoints


- OS
- IRF-assessed PFS per RECIST 1.1

Key secondary endpoints (in testing strategy)

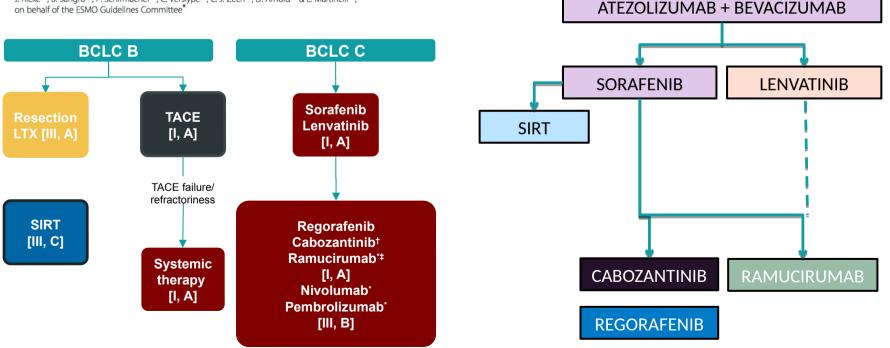
- IRF-assessed ORR per RECIST 1.1
- IRF-assessed ORR per HCC mRECIST

^a Japan is included in rest of world.

^b An additional 57 Chinese patients in the China extension cohort were not included in the global population/analysis.

NE, not estimable. ^a 96 patients (29%) in the Atezo + Bev arm vs 65 (39%) in the sorafenib arm had an event. ^b HR and *P* value were from Cox model and log-rank test and were stratified by geographic region (Asia vs rest of world, including Japan), AFP level (< 400 vs ≥ 400 ng/mL) at baseline and MVI and/or EHS (yes vs no) per IxRS. ^c The 2-sided *P* value boundary based on 161 events is 0.0033. Data cutoff, 29 Aug 2019; median survival follow-up, 8.6 mo. ^a Assessed by IRF per RECIST 1.1. ^b 197 patients (59%) in the Atezo + Bev arm vs 109 (66%) in the sorafenib arm had an event. ^c HR and *P* value were from Cox model and log-rank test and were stratified by geographic region (Asia vs rest of world, including Japan), AFP level (< 400 vs ≥ 400 ng/mL) at baseline and MVI and/or EHS (yes vs no) per IxRS. ^d The 2-sided *P* value boundary is 0.002. Data cutoff, 29 Aug 2019; median survival follow-up, 8.6 mo. Cheng AL, et al. Presented at ESMO Asia 2019

Annals of Oncology 29 (Supplement 4): iv238-iv255, 2018 doi:10.1093/annonc/mdy308


CLINICAL PRACTICE GUIDELINES

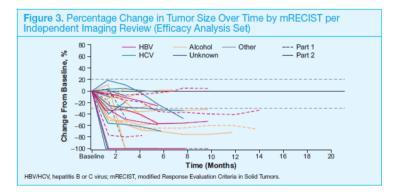
Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

A. Vogel¹, A. Cervantes², I. Chau³, B. Daniele⁴, J. M. Llovet^{5,6,7}, T. Meyer^{8,9}, J.-C. Nault¹⁰, U. Neumann¹¹, J. Ricke¹², B. Sangro¹³, P. Schirmacher¹⁴, C. Verslype¹⁵, C. J. Zech¹⁶, D. Arnold¹⁷ & E. Martinelli¹⁸, on behalf of the ESMO Guidelines Committee^{*}

Systemic Therapy of HCC

2020?

Ongoing Phase 3 Clinical Trials in HCC


Trial	IO Agent	Non-IO Agent	Comparator	Population	
RATIONALE- 301	Tislelizumab		Sorafenib*		
HIMALAYA	Durvalumab Durvalumab + Tremelimumab		Sorafenib	Advanced stage	
Imbrave 150	Atezolizumab	Bevacizumab	Sorafenib		
LEAP-002	Pembrolizumab	Lenvatinib	Sorafenib		
COSMIC-312	Atezolizumab	Cabozantinib	Sorafenib		
EMERALD-1	Durvalumab Durvalumab	Bevacizumab	Placebo	Intermediate stage in combination with TACE	
Checkmate 9DX	Nivolumab		Placebo		
Keynote-937	Pembrolizumab		Placebo	Early stage post resection/ablation	
EMERALD-2	Durvalumab Durvalumab	Bevacizumab	Placebo	-	

* non-inferiority is tested

Combination Systemic Therapy of HCC Multi-TKI + Anti-PD-1

Pembrolizumab 200 mg IV d1 + **Lenvatinib** 12 or 8 mg daily PO, q3wk

- N=30
- **ORR 53.3%** by RECIST 1.1 IIR
- Median DOR 8.3 months
- Median PFS 9.69 months
- Grade \geq 3 TEAE 73%
- SAE 50%, 13% fatal (1 SBP, 1 ARDS, 1 perforation)
- Expansion cohort underway

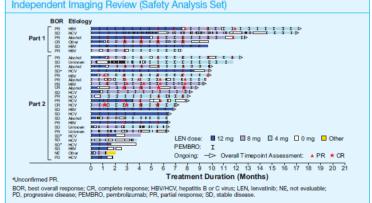
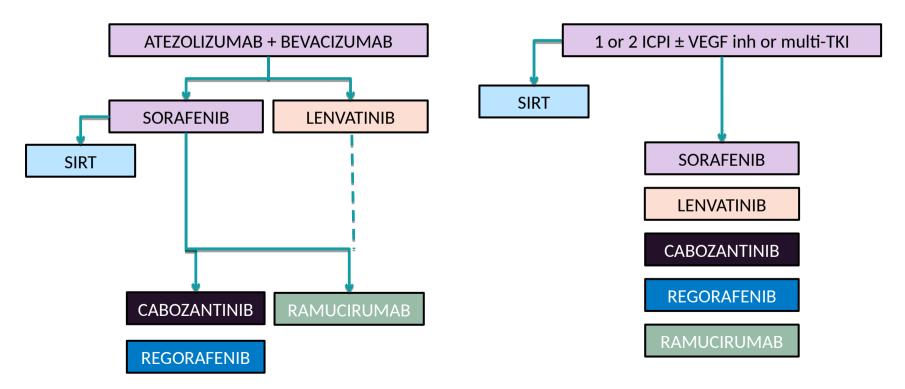
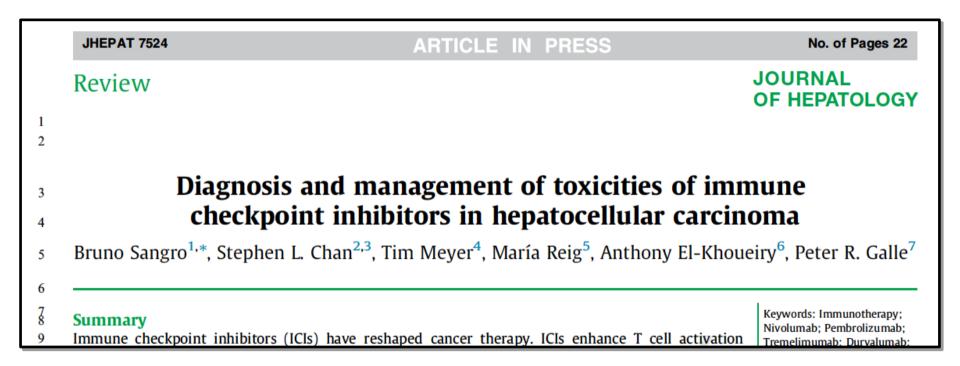



Figure 4. Duration of Treatment and Response Assessments by mRECIST per Independent Imaging Review (Safety Analysis Set)

Systemic Therapy of HCC


2020?

202x?

Take-Home Messages

- Immunotherapy through ICPIs is likely to have a large impact on HCC management due to the ability to produce durable and clinically relevant responses with few side effects.
- The combination of Atezolizumab and Bevacizumab may become the standard of care for 1L therapy (and this will impact downstream options).
- Single agents and combinations of ICPIs with other ICPIs, VEGF inhibitors or multi-TKIs are being tested in across tumor stages.
- Combinations of ICPIs with VEGF inhibitors or multi-TKIs carry significant toxicities in cirrhotic patients that demand a specific work-up for diagnosis and management.

The international multidisciplinary forum for liver cancer specialists around the latest innovations in research and care

www.ilca2020.org

The International Liver Cancer Association 14th Annual Conference

1 1 1 1 1 1 1

.

Call

II 111111

LGA Z

10 – 13 September 2020 | Madrid, Spain

.