Paris Hepatology Meeting 2021

Clinical management of cholangiocarcinoma

Paris March 10, 2021

Ulrich Beuers Otto van Delden, Heinz-Josef Klümpen, Bart Takkenberg, Joanne Verheij, Thomas van Gulik

Departments of Gastroenterology & Hepatology, Radiology, Oncology, Pathology and Surgery Tytgat Institute for Liver and Intestinal Research Amsterdam University Medical Centers Amsterdam The Netherlands

Cholangiocarcinoma Challenges

- 2nd most common primary hepatic malignancy (~15%)
- Increasing incidence globally (highest in Asia)

Cholangiocarcinoma

Incidence

Cholangiocarcinoma Challenges

- 2nd most common primary hepatic malignancy (~15%)
- Increasing incidence globally (highest in Asia)
- High heterogeneity

Cells of origin in cholangiocarcinoma

Rizvi & Gores, Gastroenterology 2013;145:1215

Localization of cholangiocarcinoma

Cholangiocarcinoma Challenges

- 2nd most common primary hepatic malignancy (~15%)
- Increasing incidence globally (highest in Asia)
- High heterogeneity
- Silent growth \rightarrow detection mostly at advanced stage
- **Poor prognosis** (5-yr survival 7-20%)

Cholangiocarcinoma Challenges

- 2nd most common primary hepatic malignancy (~15%)
- Increasing incidence globally (highest in Asia)
- High heterogeneity
- Silent growth, detection mostly at advanced stage
- Poor prognosis (5-yr survival 7-20%)
- Multiple risk factors, but most CCAs (~80%) develop spontaneously

Cholangiocarcinoma

Risk factors

	Risk factor	Study type	OR or RR from selected studies	
!	Choledochal cyst ³⁰	Meta-analysis	OR 26.71 for iCCA OR 34.94 for eCCA	
!	Choledocholithiasis ³⁰	Meta-analysis	OR 10.08 for iCCA OR 18.58 for eCCA	
	Cholelithiasis ³⁰	Meta-analysis	OR 3.38 for iCCA OR 5.92 for eCCA	
	Cholecystolithiasis ³⁰	Meta-analysis	OR 1.75 for iCCA OR 2.94 for eCCA	
!	Caroli disease ³⁹⁶	Population-based study	OR 38 for iCCA OR 97 for eCCA	
!	Primary sclerosing cholangitis ³⁹⁶	Population-based study	OR 22 for iCCA OR 41 for eCCA	
	Cirrhosis ³⁰	Meta-analysis	OR 15.32 for iCCA OR 3.82 for eCCA	
	Chronic hepatitis B ³⁰	Meta-analysis	OR 4.57 for iCCA OR 2.11 for eCCA	
Banales et al	Chronic hepatitis C ³⁰ Nat Rev Gastroent & Hepatol 2020;17:557	Meta-analysis	OR 4.28 for iCCA OR 1.98 for eCCA OR 1.98 for eCCA	rdam UMC

Cholangiocarcinoma Risk factors

Chronic inflammation of the biliary epithelium

Cholangiocarcinoma

Risk factors

Risk factor	Study type	OR or RR from selected studies
Haemochromatosis ³⁹⁶	Population-based study	OR 2.1 for iCCA
Inflammatory bowel disease ³⁰	Meta-analysis	OR 2.68 for iCCA OR 2.37 for eCCA
Chronic pancreatitis ³⁹⁶	Population-based study	OR 2.7 for iCCA OR 6.6 for eCCA
Liver fluke (Opisthorchis viverrini, Clonorchis sinensis)397	Meta-analysis	OR5 iCCA>eCCA
Type 2 diabetes mellitus ³⁹⁸	Meta-analysis	OR 1.73 for iCCA OR 1.5 for eCCA
Nonalcoholic fatty liver disease ³⁹⁹	Meta-analysis	OR 2.2 for iCCA OR 1.5 for eCCA
Obesity ³⁰	Meta-analysis	OR 1.14 for iCCA OR 1.2 for eCCA
Hypertension ³⁰	Meta-analysis	OR 1.10 for iCCA OR 1.21 for eCCA
Alcohol consumption ³⁰	Meta-analysis	OR 3.15 for iCCA OR 1.75 for eCCA
Cigarette smoking ³⁰	Meta-analysis	OR 1.25 for iCCA OR 1.69 for eCCA MAInste

Banales et a

Cholangiocarcinoma

Diagnosis

• Clinical signs and symptoms often appear (too) late

- Clinical signs and symptoms often appear (too) late
- CT is the standard imaging method for CCA

- Clinical signs and symptoms often appear (too) late
- CT is the standard imaging method for CCA
- MRI shows similar accuracy and may be of added value

- Clinical signs and symptoms often appear (too) late
- CT is the standard imaging method for CCA
- MRI shows similar accuracy and may be of added value (e.g. MRCP)
- 18F- FDG PET has no evidence-based additional diagnostic value

- Clinical signs and symptoms often appear (too) late
- CT is the standard imaging method for CCA
- MRI shows similar accuracy and may be of added value by e.g. MRCP
- ¹⁸F- FDG PET has no evidence-based additional diagnostic value
- Histopathological / cytological analysis is mandatory for CCA

(e.g. by brush cytology, intraductal biopsy)

Cells of origin in cholangiocarcinoma

Banales et al. Nat Rev Gastroent & Hepatol 2020;17:557

Conventional iCCA

Amsterdam UMC

- Clinical signs and symptoms often appear (too) late
- CT is the standard imaging method for CCA
- MRI shows similar accuracy and may be of added value by e.g. MRCP
- 18F- FDG PET has no evidence-based additional diagnostic value
- Histopathological / cytological analysis is mandatory for CCA (e.g. by brush cytology, intraductal biopsy)
- Future approaches: e.g. biliary miRNAs, serum CYFRA 21-1, osteopontin...

- iCCA: (extended) hemihepatectomy, segmental resection
- pCCA: (extended) hemihepatectomy
- dCCA: pancreatoduodenectomy (Whipple's procedure)

Cholangiocarcinoma

Criteria of resectability

- No (extra)hepatic metastases
- Lymph node metastases confined to hepatoduodenal ligament (N1)
- Possibility of achieving free ductal margins on future remnant liver
- Involvement of portal vein bifurcation possible
- Involvement of hepatic artery branch to future remnant liver : ?
- Volume of future remnant liver > 35-40%

Perihilar Cholangiocarcinoma

Staging and Resectability

IgG4-related cholangitis mimics CCA

How to distinguish benign and malignant biliary stenosis?

Cholangiographic appearance mimicking cholangiocarcinoma (**CCA**)

Misdiagnosis is common!

Hubers & Beuers, Viszeralmedizin 2015;31:185

Cholangiocarcinoma mimicking lesion – a problem?

AMC 1984–2015: 323 resections under suspicion of cholangiocarcinoma

50 (15%) : benign

- 21/50 : IgG4-related cholangitis
- 29/50 : fibrosing cholangitis (undefined)

Preoperative biliary drainage (PBD) in resectable CCA?

pCCA

YES, at least when •cholangitis •<50% future liver remnant volume

CholangitisImproved liver remnantPancreatitisfunction and regeneration

90-day mortality after PBD

ERC vs. PTC 3/27 11/27

 \rightarrow Endoscopic route prefered

Preoperative biliary drainage (PBD) in resectable CCA?

<u>90-day</u>	/ mortal	<u>ity after PBD</u>	
ERC 3/27	VS.	PTC 11/27	
\rightarrow Enc	loscopi	c route prefered	t

Coelen et al. Lancet Gastroenterol Hepatol. 2018;3:681

		i DD group		
Variable	(N=94)	(N=102)	RR	95% c.i.
Overall complications - n (%)*	37 (39)	76 (75)	0.53	0.40 - 0.70
PBD complications - n (%)	2 (2)	48 (47)	NA	
Surgery complications - n (%)	35 (37)	48 (47)	0.79	0.57 - 1.11
Other complications (not prot.) - n (%)	30 (32)	25 (25)	1.30	0.83 - 2.04
Mortality	4 (4)	9 <i>(</i> 9)	0.48	0.15 - 1.51
Hospital readmisson - n (%)*	11 <i>(12</i>)	34 (33)	0.35	0.19 - 0.65
Hospital stay - days (median; IQR)	13 (10-20)	15 <i>(11-22)</i>	-	
	-			

Van der Gaag et al. N Engl J Med 2010;326:129

Overall survival of patients with pCCA 2000 - 2018

- Resected 171 PHC-patients
- --- Resected other diagnosis
- Unresectable at laparotomy
- Unresectable at or after staging laparoscopy
- Initially unresectable

In 171 resected patients with proven pCCA: Median OS 46 months 5-year survival 36 %

Rassam et al. Langenbecks Arch Surg. 2018;403:289, updated

Systemic chemotherapy of cholangiocarcinoma

1st line: Cisplatin-Gemcitabine

Systemic chemotherapy of cholangiocarcinoma Mechanisms of chemoresistance

	MOC-1a	MOC-1b	MOC-2	MOC-3	MOC-4	MOC-5	MOC-6	MOC-7	MOC-8
мос	↓ Drug uptake	↑ Drug export	↓ Intracellular proportion of active drug	Altered drug targets	↑ DNA repair	↓ Apoptosis	↑ Survival	Changes in tumour environment	↑ Epithelial to mesenchymal transition
Genes	SLC29A1 SLC28A1 SLC31A1 SLC22A1	ABCB1 ABCC1 ABCC3	UMPS TYMP UPP1 GSTP1	TYMS ESR1 ESR2 EGFR	ERCC1 RAD51 MSX2/3/6 MLH1 PMS2 RRM2B	MET FAS TP53 BAX BAK1	BCL2 ERK AKT1	LAM	HMGA1
Proteins	↓ ENT1 ↓ CNT1 ↓ CTR1 ↓ OCT1	↑ MDR1 ↑ MRP1 ↑ MRP3	↓ UMPS ↓ TYMP ↓ UPP1 ↑ GSTP1	↑ TYMS ↓ ERα ↓ ERβ ↓ EGFR	↑ ERCC1 ↑ RAD51 ↑ MutS ↑ MutLa ↑ p53R2	↓ HGFR ↓ FAS ↓ p53 ↓ BCL2L4 ↓ BCL2L7	↑ BCL-2 ↑ ERK ↑ AKT	↑ Laminin	↑ HMGA1
Drugs	Gemcitabine 5-FU Cisplatin TKls	Many drugs	Gemcitabine 5-FU Cisplatin	5-FU Targeted drugs	Cisplatin Epirubicin Gemcitabine	Gemcitabine 5-FU	Cisplatin 5-FU Sorafenib	Doxorubicin Sorafenib	Gemcitabine

Poor response to chemotherapy

Banales et al. Nat Rev Gastroent & Hepatol 2020;17:557 (Consensus ENS-CCA), modified

Chemotherapy of cholangiocarcinoma

Molecular profiling and targeting of actionable mutations/amplifications

Clinical management of cholangiocarcinoma

- Surgical resection is a potential curative option for CCA
- Adjuvant chemotherapy with Capecitabine for 6 months after surgical resection is recommended
- Liver transplantation is a potentially curative option for iCCA and pCCA under strict limitations following national protocols
- Cisplatin-Gemcitabine is the standard of palliative care chemotherapy for patients with unresectable CCA
- FOLFOX can be recommended as 2nd line standard of palliative care chemotherapy
- Promising local and systemic therapeutic approaches are under development

